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PREFACE 
This volume contains the proceedings of the International Workshop on Discrete-Event 
System Design, DESDes’01 held in Przytok near Zielona Góra, Poland, on 26-29 of 
June 2001. It contains selected 40 papers contributed by authors from Belarus, Czech 
Republic, Germany, Japan, Poland, Portugal, Spain, Turkey and Ukraine.  

The aim of the International Workshop on Discrete-Event System Design, DESDes’01 
is to bring together researchers from universities and industry, and provide them with 
a platform to report on new topics in embedded microsystem design. 

The Workshop focuses implementation of reactive, embedded, discrete-event systems in 
Field Programmable Logic (FPGA and CPLD), as well as related formal design 
methodologies and tools.  

The scope of the Workshop includes Hardware Description Languages (VHDL or 
Verilog) in digital microsystem design, and hardware and software implementations of 
Petri net-based specifications. All others related aspects of digital microsystem design 
are also considered, especially specific integrated circuits (ASICs) and system-on-a-chip 
(SoC) applications. To complete the Workshop program there will be a Panel 
Discussion on new formal methodologies and influence of modern CAD tools into 
digital system design. 

Przytok is a picturesque village near Zielona Góra. There is an excellent tourist and rest 
base. It consists of a monumental Renaissance palace, Special School Centre and 
International Youth Hostel. The social events offer a wide variety of opportunities to 
meet and exchange information about the possible collaboration. 

Zielona Góra has around 120.000 inhabitants and is located 450 km west of Warsaw 
and 200 km east of Berlin. Two universities are located there: Technical University and 
Pedagogical University. The region of Zielona Góra is covered by beautiful wild forests 
and surrounded by attractive lakes. 

We are very grateful to the members of the International Program Committee and all 
sponsors of our Workshop. 

We expect that the readers of Proceedings will find this volume useful, informative and 
helpful in their related creative research works. 

Finally, thank you for participating in the DESDes’01 Workshop. We hope you will 
have an enjoyable and productive experience in Zielona Góra and Przytok. 
 
 
 

Marian Adamski 
Chairman 

 
Zielona Góra, June 4th, 2001 

 

mailto:M.Adamski@iie.pz.zgora.pl
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The International Workshop  
on Discrete-Event System Design, DESDes’01, 

June 27÷29, 2001; Przytok near Zielona Gora, Poland 

SEQUENT MODEL FOR REPRESENTATION OF 
DIGITAL SYSTEMS BEHAVIOR 

Arkadij ZAKREVSKIJ 

Institute of Engineering Cybernetics NAS B, Surganov Str. 6, 220012, Minsk, Belarus  
e-mail: zakr@newman.bas-net.by 

 
Abstract. A model of sequent automaton is proposed for description of digital 
systems behavior in the space of Boolean variables: input, output and inner ones. 
The rules of its equivalence transformations are formulated, leading to several 
canonical forms. Simple sequent automaton is introduced, represented in matrix 
form, which is intended for easing PLA implementation of the automaton. The 
problem of automata correctness is discussed.  

Key Words. Digital system behavior, Boolean space of events, sequent automaton, 
canonical forms, checking for correctness, PLA implementation 

1. EVENTS IN THE BOOLEAN SPACE  
Many complex engineering systems may be regarded as dynamic digital systems working in 
some surroundings. Very often their behavior can be expressed in terms of Boolean variables 
taking their values from the set {0, 1} and defining in such a way the states of individual 
elements of the system. Usually, when a control system is constructed to ensure the proper 
interaction between system components, the set W of all variables is divided into three classes: 
X, Y and Z. Input variables (X) present information received from sensors situated in 
surroundings or in the system itself; output variables (Y), calculated inside the system, are 
intended for control purposes and used by executing elements; and inner variables (Z) may 
play both roles and could be considered as memory of the system. 

2|W| different combinations of values of variables from W constitute the Boolean space over W  
(|W| denotes the cardinality of set W). This Boolean space is designated below as BS(W). Each 
of its elements may be regarded as a global state of the system, or as the corresponding event 
that occurs when the system enters that state. Let us call such an event elementary. In the same 
way, the elements of Boolean spaces over X, Y and Z may be regarded as input states, output 
states and inner states, as well as corresponding events.  

Besides that far more events of other types may be introduced into consideration. Generally, 
every subset of BS(W) may be interpreted as an event which occurs when some element from 
BS(W) is realized, i. e. when the variables from W take the corresponding combination of 
values. In this general case the event is called complicated and could be presented by the 
characteristic Boolean function of the regarded subset. So, the number of complicated events 
coincides with the number of arbitrary Boolean functions of |W| variables.  



 

From the practical point of view, the following two types of events deserve special 
consideration: basic events and simple events. 

Basic events are represented by literals - symbols of variables or their negations - and occur 
when these variables take corresponding values. For example, basic event a occurs when 
variable a equals 1, and event c' occurs when  c = 0. The number of different basic events is 
2|W|. 

Simple events are represented by elementary conjunctions, and occur when these conjunctions 
take value 1. For example, event ab'f occurs when  a = 1, b = 0 and  f  = 1. The number of 
different simple events is 3|W|, including trivial event, when values of all variables are 
arbitrary. 

Evidently, the class of simple events absorbs elementary events and basic events. So, 
elementary conjunction ki is the general form for representation of events i of all three 
introduced types; it contains symbols of all variables in the case of an elementary event and 
only one symbol when a basic event is regarded. One event i can realize another j - it means 
that the latter always comes when the former comes. It follows from the definitions, that it 
occurs when conjunction ki implicates conjunction kj , in other words, when kj can be obtained 
from ki  by deleting some of its letters. For example, event abc'de' realizes events ac'd and 
bc'e', event ac'd realizes basic events a, c' and d, etc. Hence, several different events can occur 
simultaneously, if only they are not orthogonal. 

2. SEQUENT AUTOMATON  
The behavior of a digital system is defined by the rules of changing its state. A standard form 
for describing such rules was suggested by the well-developed classical theory of finite 
automata considering relations between the sets of input, inner and output states. Unluckily, 
that model becomes inapplicable for digital systems with many Boolean variables - hundreds 
and more. That is why a new formal model was proposed in [3-5] called sequent automaton. It 
takes into account the fact, that interaction between variables from W takes place within 
comparatively small groups and has functional character. And it suggests means for describing 
both the control unit of the system and the object of control - the body of the system. 

Sequent automaton is a logical dynamic model defined formally as a system S of sequents si. 
Each sequent si has the form fi |- ki  and defines the "cause-effect" relation between some 
complicated event represented by Boolean function fi and a simple event ki represented by 
conjunction term ki ; |- is the symbol of the considered relation. Suppose function fi  is given in 
disjunctive normal form (DNF). 

The expression fi |- ki  is interpreted as follows: if at some moment function fi  takes value 1, 
then immediately after that ki must also become equal to 1 - by that the values of all variables 
in ki are defined uniquely. In such a way a separate sequent can present a definite demand to 
the behavior of the discrete system, and the set S as a whole - the totality of such demands. 

Note, that the variables from X may participate only in fi and can carry information got from 
some sensors, the variables from Y present control signals and participate only in ki, and the 
variables from Z are feed-back variables which can be presented both in fi and ki.  

The explication of "immediately after that" depends greatly on the accepted time model. It is 
different for two kinds of behavior interpretation, which could be used for sequent automata, 
both of practical interest: synchronous and asynchronous.  



 

We shall interpret system S mostly as a synchronous sequent automaton. In this case the 
behavior of the automaton is regarded in discrete time t - the sequence of moments 
to , t1 , t2 , ...,  tl , tl+1, ... . At a current transition from tl  to tl+1 there are executed 
simultaneously all such sequents si for which fi = 1 and as a result all corresponding 
conjunctions ki turn to 1 (all their factors take value 1). In that case "immediately after that" 
means "at the next moment".  

Suppose that if some of inner and output variables are absent in conjunctions ki of executed 
sequents, they preserve their previous values. That is why the regarded sequent automata are 
called inertial [4]. Hence a new state of the sequent automaton (the set of values of inner 
variables) is defined uniquely, as well as new values of output variables.  

Sometimes the initial state of the automaton is fixed (for moment to), then the automaton is 
called initialized. The initial state uniquely determines the set R of all reachable states. When 
computing it, it is supposed that all input variables are free, i. e. by any moment tl they could 
take arbitrary combinations of values. Let us represent set R by characteristic Boolean 
function ϕ of inner variables which takes value 1 on the elements from R. In the case of non-
initialized automata it is reasonable to consider that ϕ = 1.  

Under asynchronous interpretation the behavior of sequent automaton is regarded in 
continuous time. There appear a lot of more hard problems of their analysis connected with 
races between variables presented in terms ki, especially when providing the automaton with 
important quality of correctness. 

3. EQUIVALENCE TRANSFORMATIONS AND CANONICAL FORMS  
Let us say that sequent si is satisfied in some engineering system if event fi is always followed 
by event ki. And sequent si realizes sequent sj if the latter is satisfied automatically when the 
former is satisfied.  

Affirmation 1. Sequent si realizes sequent sj if and only if fj ⇒ fi  and  ki ⇒ kj , where  ⇒ is 
the symbol of formal implication. 

For instance, sequent ab ∨ c |- uv' realizes sequent abc |- u. Indeed, abc ⇒ ab ∨ c and uv' ⇒ u.  

If two sequents si and sj realize each other, they are equivalent. In that case fi = fj and ki = kj . 

The relations of realization and equivalence can be extended onto sequent automata S and T. If 
S includes in some form all demands contained in T, S realizes T. If two automata realize each 
other, they are equivalent.  

These relations are easily defined for elementary sequent automata Se and Te, which consist of 
elementary sequents. Left part of such a sequent presents an elementary event in BS(X ∪ Z), 
right part presents a basic event (for example, ab'cde' |- q, where it is supposed that  X ∪ Z = 
{a, b, c, d, e}. Se realizes Te if it contains all sequents contained in Te. Se and Te are equivalent 
if they contain the same sequents. It follows from here that elementary sequent automaton is a 
canonical form.  

There exist two basic equivalencies formulated as follows. 

Affirmation 2. Sequent fi ∨ fj |- k is equivalent to the pair of sequents fi  |- k and fj |- k. 

Affirmation 3. Sequent f  |- ki kj is equivalent to the pair of sequents f  |- ki  and  f  |- kj. 



 

According to these affirmations any sequent can be decomposed into a series of elementary 
sequents (which cannot be decomposed further). That transformation enables to compare any 
sequent automata checking them for binary relations of realization and equivalence. 

Affirmations 2 and 3 can be used for equivalence transformations of sequent automata by 
elementary operations of two kinds: splitting sequents (changing one sequent for a pair) and 
merging sequents (changing a pair of sequents for one, if possible). 

Elementary sequent automaton is useful for theoretical constructions but could turn out quite 
non-economical when regarding some real control systems. Therefore two more canonical 
forms are introduced.  

The point sequent automaton Sp consists of sequents in which all left parts represent 
elementary events (in BS(X ∪ Z)) and are different. The corresponding right parts show the 
responses. This form can be obtained from elementary sequent automaton Se by merging 
sequents with equal left parts.  

The functional sequent automaton Sf consists of sequents in which all right parts represent 
basic events in BS(Z ∪ Y) and are different. So the sequents have the form  fi

1 |- ui or fi
0 |- ui', 

where variables ui ∈ Z ∪ Y, and the corresponding left parts are interpreted as switching 
functions for them: on-functions fi

1 and off-functions fi
0. Sf can be obtained from Se by 

merging sequents with equal right parts.  

Note that both forms Sp and Sf can be obtained also from arbitrary sequent automata by 
disjunctive decomposition of the left parts of the sequents (for the point sequent automaton) or 
conjunctive decomposition of the right parts (for functional one). 

4. SIMPLE SEQUENT AUTOMATON  
Consider now a special important type of sequent automata - a simple sequent automaton. It is 
defined formally as a system S of simple sequents - expressions ki′ |- ki″  where both ki′  and 
ki″ are elementary conjunctions representing simple events. This form has a convenient matrix 
representation, inasmuch as every elementary conjunction can be presented as a ternary vector. 

Let us represent any simple sequent automaton by two ternary matrices: a cause matrix A and 
an effect matrix B. They have equal number of rows indicating simple sequents, and their 
columns correspond to Boolean variables - input, output and inner ones.  

Example. The two ternary matrices 

          a  b  c  p  q  r                   p  q  r  u  v  w  z 

          1  −  −  − 0  −            −  1  −  −  1  −  1 

          −  0  1  1  −  −                  −  −  0  1  −  0  − 

A  =   0  1  −  −  1  1   ,     ΒΒΒΒ  =   1  0  −  −  1  −  0  
          −  −  0  −  −  0                  0  −  −  −  −  1  − 

          −  −  0  1  0  −                   −  1  1  0  −  1  −  

represent the following system of simple sequents regarded as a simple sequent automaton: 
      aq′′′′ |- qvz ,  

     b′′′′cp |- r′′′′uw′′′′ , 
              a′bqr |- pq′vz′ , 
                  c′′′′r′′′′  |- p′′′′w , 
                  c′pq′ |- qru′w .     



 

Here X = {a, b, c}, Y = {u, v, w, z}, Z = {p, q, r}. 

It has been noted [1] that, to a certain extent, simple sequents resemble the sequents of the 
theory of logical inference, which were introduced by Gentzen [2]. The latter ones are defined 
as expressions   

A1, …, An → B1, …, Bm   

that connect arbitrary logic formulae  A1, …, An, B1, …, Bm  and are interpreted as implications   

A1 ∧ … ∧ An → B1 ∨ … ∨ Bm . 

The main difference is that any simple sequent ki′ |- ki″ presents not pure logical but cause-
effect relation: event ki″ is generated by event ki′  and appears after it, so we cannot mix 
variables from ki′  with variables from ki″ .  

But sometimes we may discard this time aspect and consider terms ki′  and  ki″ on the same 
level, for instance, when looking for stable states of the regarded system. In that case sequent  
ki′ |- ki″  could be formally changed for implication  ki′ → ki″  and subjected further to Boolean 
transformations, leading to equivalent sets of Gentzen sequents and corresponding sets of 
standard disjuncts usual for theory of logical inference. 

For example, in such a way the system of simple sequents 

   ab |- cd',   a'b' |- cd,   a'b |- c 

may be transformed into the following system of disjuncts: 

   a ∨ b ∨ d,   a' ∨ b' ∨ d',   a' ∨ c' ∨ d,   b ∨ c' ∨ d'. 

5. APPLICATION IN LOGIC DESIGN 
The model of simple sequent automaton is rather close to the well-known technique of 

disjunctive normal forms (DNF) used for hardware implementation of systems of Boolean 
functions [6]. Indeed, each row of matrix A may be regarded as a conjunctive term (product), 
and each column in B defines DNFs for two switching functions of the corresponding output 
or inner variable: 1s indicate terms entering ON-functions, while 0s indicate terms which 
enter OFF-functions. Note, that these DNFs can be easily obtained by transforming the 
regarded automaton into Sf-form and changing after that expressions fi

1|- ui for ui
1= fi

1 and fi
0|-

ui' for ui
0= fi

0. For the same example 

p1= a'bqr,  p0 = c'r ';    q1 = aq' ∨ c'pq', q0 = a'bqr ;     r1 = c'pq', r0 = b'cp ;  
u1 = b'cp, u0 = c'pq' ;     v1 = aq' ∨ a'bqr ;       w1 = c'r' ∨ c'pq', w0 = b'cp ; 
z1 = aq',    z0 = a'bqr . 

It is seen from here that the problem of constructing a simple sequent automaton with 
minimum number of rows is similar to the minimization of a system of Boolean functions in 
the class of DNFs known as a hard combinatorial problem. An approach to its solving was 
suggested in [7, 8]. 

The considered model turned out to be especially convenient for representation of 
programmable logic arrays (PLA) with memory on RS-flip-flops. It is used also in methods of 
automaton implementation of parallel algorithms for logical control described by expressions 
in PRALU [11]. 

Consider a simple sequent automaton shown in the above example. It is implemented by 
a PLA represented below. It has three inputs (a, b, c) supplied with inverters (NOT-elements) 
and four outputs (u, v, w, z) supplied with RS-flip-flops. So its input and output lines are 



 

doubled. The six input lines are intersecting with five inner ones, and at some points of 
intersection transistors are placed. Their disposition can be presented by a Boolean matrix 
easily obtained from matrix A, and determines the AND-stage of the PLA. In a similar way 
the OR-stage of the PLA is found from matrix B and realized on the intersection of inner lines 
with 14 output ones. 
 

Figure 1. PLA implementation of a sequent automaton 

6. CHECKING FOR CORRECTNESS 
In general, correctness is a quality of objects of some type, defined as the sum of several 

properties, which are considered reasonable and necessary [10]. 
Let us enumerate such properties first for synchronous sequent automata. 
Evidently, for any sequent si which carries some information inequalities fi ≠ 0 and ki ≠ 1 

should hold, to avoid trivial sequents. 
Sequents si and sj are called parallel if they could be executed simultaneously. A 

necessary and sufficient condition of parallelism for non-initialized automaton is relation 
fi ∧ fj ≠ 0, for initialized - relation fi ∧ fj ∧ ϕ ≠ 0. 

First of all, any sequent automaton should be consistent, that is very important. That 
means that for any parallel sequents si and sj relation ki ∧ kj ≠ 0 must hold. Evidently, this 
condition is necessary, inasmuch as by its violation there exists some variable that must take 
two different values which is impossible. 

The second quality is not so necessary for sequent automata as the first one, but is also 
useful. It is irredundancy. A system S is irredundant if it is impossible to delete from it some 
sequent or if only a literal from a sequent without violating the functional properties of the 
system. For example, it should not have "non-reachable" sequents, such si for which 
fi  ∧ ϕ = 0. 
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It is rather easy to check a simple sequent automaton for consistency. An automaton 
represented by ternary matrices A and B is obviously consistent if for any orthogonal rows in 
matrix B the corresponding rows of matrix A are also orthogonal. Note that this condition is 
satisfied in Example. 

One more useful quality called persistency is very important for asynchronous sequent 
automata. To check them for this quality it is convenient to deal with the functional canonical 
form.  

The point is that several sequents can be executed simultaneously and if the sequent 
automaton is asynchronous, these sequents (called parallel) could compete - the so called race 
could take place. The automaton is persistent if the execution of one of the parallel sequents 
does not destroy the conditions for executing other ones.  
 
Affirmation 4. In a persistent asynchronous sequent automaton for any pair of parallel 
sequents  

 fi
1 |- ui  and  fj

1 |- uj , 
 fi

0 |- ui'  and  fj
1 |- uj , 

 fi
1 |- ui  and  fj

0 |- uj' , 
 fi

0 |- ui'  and  fj
0 |- uj' 

the corresponding relation should hold: 

 fi
1 fj

1 : ui' uj'  ⇒ (fi
1: ui' uj ) (fj

1 : ui uj'), 
  fi

0 fj
1 : ui uj'  ⇒ (fi

0: ui uj ) (fj
1 : ui' uj'), 

fi
1 fj

0 : ui' uj  ⇒ (fi
1: ui' uj' ) (fj

0 : ui uj), 
fi

0 fj
0 : ui uj  ⇒ (fi

0: ui uj' ) (fj
0 : ui' uj), 

 
where expression f : k means the result of substitution those variables of function  f  which 
enter elementary conjunction k for the values satisfying equation  k = 1. 
 
The proof of this affirmation can be found in [9]. 
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Abstract. A method for analysing and predicting the timing properties of a 
program fragment will be described. First a little language implemented to 
describe a processor’s architecture is presented followed by the presentation of a 
new static WCET estimation method. The timing analysis starts by compiling a 
processor’s architecture program followed by the disassembling of the program 
fragment. After sectioning the assembler program into basic blocks, call graphs 
are generated and these data are later used to evaluate the pipeline hazards and 
cache miss that penalize the real-time performance. Some experimental results of 
using the developed tool to predict the WCET of code segments using some Intel 
microcontroller are presented. Finally, some conclusions and future work are 
presented. 
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1. INTRODUCTION 
Real-time systems are characterized by the need to satisfy a huge timing and logical 
constraints that regulate their correctness. Therefore, predicting a tight worst case execution 
time of a code segment will be a must to guarantee the system correctness and performance. 
The simplest approach to estimate the execution time of a program fragment is for each 
arithmetic instruction, counting the number of times it appears on the code, express the 
contribution of this instruction in terms of clock cycles and update the total clock cycles with 
this contribution. Nevertheless, these approaches are unrealistic since they ignore the system 
interferences and the effects of cache and pipeline, two very important features of some 
processors that can be used in our hardware architecture. Some very elaborated methodology 
for WCET estimation, such as, Shaw [1] were developed in the past, but none of them takes 
into account the effects of cache and pipeline. 
Theoretically, the estimation of WCET must skip over all the profits provided by modern 
processors, such as caches, and pipeline (i.e., each instruction execution suffers from all kind 
of pipeline hazards and each memory access would cause a cache miss) as they are the main 



source of uncertainty. Experimentally, a very pessimistic result would be obtained, and so, 
making useless those processor’s resources. Some WCET estimation schemes oriented to 
modern hardware features, were presented in the last years, and among them we refer to: 
Nilsen [2], Steven Li [3], Whalley [4], and Sung-Soo Lim [5]. However, these WCET 
estimators do not address some specificity of our target processors (microcontrollers and 
DSPs), since they are oriented to general-purpose processor. Therefore, we propose a new 
machine independent estimator, implemented as a little language for architecture description. 
Such a machine independent scheme, based on a little language was used before by 
Tremblay[6] to generate machine independent code, Proebsting and Fraser [7] to describe 
pipeline architectures and Nilsen [5] to implement a compiler, simulator and WCET estimator 
for pipeline processors.  

2. LITTLE LANGUAGE  
The purpose of any little language, typically, is to solve a specific problem and, in so doing, 
simplify the activities related to the solution of the problem. Our little language’s statements 
are created based on the tasks that must be performed to describe processor’s architectures in 
terms of structure and functional architecture of the interrupt controller, PTS (Peripheral 
Transaction Server), PWM (Pulse Width Modulation), WG (Waveform Generator), and HIS 
(High Speed Input), instruction set, instruction semantics, addressing modes, processor’s 
registers, instruction coding, compiler’s specificity, pipeline and cache resources, and so on. 
For our little language, we adopt a procedural and modular paradigm (language paradigm 
defines how the language processor must process the built-in statements), such that modules 
are independent from each other, the sequence of modules execution does not matter, but the 
register module must always be the first to be executed and within each module an exact 
sequence of instructions is specified and the computer executes them in the specified order.  A 
processor’s architecture program is written by modules, each one describing a specific 
processor’s feature such as instruction set, interrupt structure and mechanism, registers 
structure, memory organization, pipeline, data cache, instruction cache, PTS, and so on. A 
module can be defined more than once, and it is a processor language job to verify the 
information consistency among them and concatenate all them into a single module.  

The disassembler process implemented into four phases, has as input an executable file 
contains the code segment that one wants to measure and the compiled version of the 
processor’s architecture program. The disassembler process starts at the start-up code address 
(startup code is the bootstrap code executed immediately after the reset or  power-on of the 
processor)  and follows the execution flow of the program:  

1. starting at the start-up code address follows all possible execution paths till reaching 
the end address of the “main” function. At this stage, all function calls are examined 
and their entry code addresses are pushed into an auxiliary stack, 

2. from the entry address of the “main” function, checks the main function code for 
interrupt activation, 

3. for each active interrupt, gets its entry code address and pushed it into the auxiliary 
stack, 

4. pops each entry address from the auxiliary stack and disassemble it, following the 
function’s execution paths. 

The execution of the simulation module is optional and the associated process is described by 
a set of operation introduced using the function “SetAction”. For instance, the simulation 
process, including the flag register affectation, associated to an instruction are described by a 



set of operation specified using  “SetAction” calls.  Running the simulation process before the 
estimation process, will produce a more optimistic worst case timing analysis since it can: 

1. rectify the execution time of instructions that depend on data locations, such as stack, 
internal or external memory, 

2. solve the indirect address problem by checking if it is a jump or a function call 
(function call by address), 

3. estimate the iteration number of a loop. 

The WCET estimator module requires a direct interaction with the user as some parameters 
are not directly measurable through the program code. Note that, the number of an interrupt 
occurrence and the preview of a possible maximum iterations number associated to an infinite 
loop are quite impossible to be evaluate using only the program code. The WCET estimation 
process was divided into two phases:  

1. first, the code segment to be measured is decomposed into basic blocks, 

2. for each basic block, it will be estimated the lower and upper execution time, using the 
shortest path method and a timing scheme [1]. 

The shortest path algorithm with the basic block graph as input is used to estimate the lower 
and upper bound on the execution time of the code segment. For the estimation of the upper 
bound, it is used the multiplicative inverse of the upper execution time of each basic block. A 
basic block is a sequence of assembler’s instructions, such as, only the first instruction can be 
prefixed by a label and only the last one can be a control transfer instruction. The 
decomposition phase is carried out following the steps below: 

1. rearrangement of code segment to guarantee the visual cohesion of a basic block. Note 
that, the ordering of instructions by address make more difficult the visualization of 
the inter basic block control flow, due to long jump instructions that can occur 
between basic blocks. To guarantee that visual cohesion, all sequence of instructions 
are rearranged by memory address, excluding those one located from long jump labels 
which are inserted from the last buffer index, 

2. characterization of the conditional structure through the identification of the 
instructions sequence that compose the “if” and “else” body,  

3. characterization of the loop structure through the identification of the instructions 
sequence that composes the loop body, control and transfer control. It is essential to 
discern between  “while/for” and “do while” loop since the timing schemes are 
different, 

4. After the identification and characterization of the control and loop structures, it will 
be built a basic block graph, showing all the execution paths between basic blocks  

5. and for each basic block, find the lower and upper execution time. 

2.1. Pipeline Modelling 
The WCET estimator presented so far, considers that an instruction’s execution is fixed over 
the program execution, i.e., it ignores the contribuition of modern processors. Note that, the 
dependence among instructions can cause pipeline hazards, introducing a delay in the 
instructions execution. This dependence emerges as several instructions are simultaneously 
executed and as the result of this parallelism execution among instructions, the execution time 
of an instruction fluctuates depending on the set of its neighbouring instructions. Our little 
language analyses the pipeline using the pipeline hazard detection technique suggested by 



Proebsting and Fraser [7] and models the pipeline as a set of resources and each instruction as 
a process that acquires and consumes a subset of resources for its execution. Special purpose 
functions, such as, “setPipeStage(Mn)” and “SetPipeFunctionalUnit(Mn,num)” are used to 
define the pipeline stages and functional units, respectively. For each instruction, there is a set 
of functions to specify the pipeline stage each source operand must be available, the pipeline 
stage the output of the destination operand becomes available, each pipeline stage required to 
execute an instruction and the execution time associated to that stage, and the control hazard 
cost associated to a branch instruction. 

The pipeline analysis of a given basic block must always take into account the influences of 
the predecessor basic blocks (note that, the dependence among instructions can cause pipeline 
hazards, introducing a delay in the instructions execution), otherwise, it leads to an 
underestimation of the execution time. Therefore, at the hazard detection stage of a given 
basic block, it will be always incorporate the pipeline’s state associated to the predecessor 
basic blocks over the execution paths. The resources vector that describes the pipeline’s state 
it will be iteratively updated by inserting pipeline stalls to correct the data and/or structural 
hazards when the next instruction is issued. If these two  hazards happen simultaneously, the 
correction process start at the hazard that occurred first and after it will be checked if the 
second one still remains. The issuing of the new instruction will be always preceded by the 
updating of the previous pipeline’s state, achieved by shifting the actual pipeline resource 
vector one cycle forward. 

The pipeline architectures, usually, present special techniques to correct the execution flow 
when a control hazard happens. For instance, the delay transfer control technique offers the 
hardware an extra machine cycle to decide the branch. Also, special hardware is used to 
determine the branch label and value condition at the end of the instruction’s decode. As one 
can conclude, the execution of delay instructions does not depend on the branch decision and 
it is always carried out. So, we model the control hazard, as being caused by all kind of 
branch instruction and by adding the sum of execution time of all instruction in the slot delay 
to the basic block execution time. 

2.2. Cache Modelling 
Cache is a high speed and small size memory, typically, a SRAM that contains parts of the 
most recent accesses to the main memory. Nowadays, the time necessary to load an 
instruction or data to the processor is much longer than the instruction execution time. The 
main rule of a cache memory is to reduce the time needed to move the information from and 
to the processor. An explanation for this improvement, comes from the locality of reference 
theory – at any time, the processor will access a very small and localized region of the main 
memory and the cache load this region, allowing faster memory accesses to the processor.  

In spite of the memory performance enhancement, the cache makes the execution time 
estimation harder, as the execution time of any instruction will vary and depends on the  
presence of the instruction and data into the caches. Furthermore, to exactly know if the 
execution of a given instruction causes a cache miss/hit, it will be necessary to carry out a 
global analysis of the program. Note that an instruction’s behaviour can be affected  by 
memory references that happened long time before. Adversely, the estimation of WCET 
becomes harder for the modern processors, as the behaviour of cache and pipeline depend on 
each other. Therefore, we propose the following changes to the algorithm that takes into 
account the pipeline effects: 

1. Classify the cache behaviour [4] for any data and instruction as cache hit or cache miss 
before the analysis of the pipeline behaviour, 



2. Before the issuing of an instruction, verify if there is any cache miss related to the 
instruction, and if any, apply the miss penalty beforehand and then the detection and 
correction of pipeline hazards. 

3. EXPERIMENTAL RESULTS 
By the moment, we will present some results using the 8xC196 Intel microcontrollers as they 
are the only ones present all needed execution time information in the user’s guide. But we 
hope soon to present results of experiments with modern processor such as, some Texas 
Instruments DSPs, Intel 8xC296, PICs and so on.  At a first stage, the WCET estimator built 
the call graph given at the lower right quadrant of fig.2 and then, func() identified by the label 
C_2192 will be processed and providing a similar screen. At the upper right quadrant, 
information such as execution time of individual basic blocks, basic block control flow and 
function execution time are presented.  At the lower right quadrant, can be presented the 
assembler code translated by the disassembler from the executable code, the call graph and 
the simulator state. The upper left quadrant presents parts our little language program 
describing the microcontroller architecture. 

4. CONCLUSIONS 
A very friendly tool for the WCET estimation was developed and the results obtained over 
some Intel microcontroller were very satisfactory.  To a complete evaluation of our tool we 
will realize more test using other classes of processors such as DSPs, PICs and some 
Motorola microcontrolers. A plenty use of this tool requires some processors informations, 
such as, the execution time of each instructions composing the processor instruction set, 
sometimes not provided in the processor user’s guide. In such case, to time an individual 
instruction, we recommended the use of the logic analyzer to trigger on the opcode at the 
target instruction location and on the opcode and location of the next instruction. 

 
Fig. 1. Digital Oscilloscope triggers on the opcode of the first and last instructions of a code segment 

 



 
Fig. 2. WCET = 61µs was statically estimated  using the developed tool over the same code segment 
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1. INTRODUCTION 

In many applications it is necessary to develop control systems based on Petri nets [1]. When a 
complex system is going to be implemented in a small space, the best solution may be to use a 
FPGA.  
FPGA architectures [2] are divided in many programmable and configurable modules that can be 
interconnected with the aim of optimizing the use of the device surface. It is necessary to 
remember that the main problem of PLDs, PALs and PLAs is the poor use of the device surface, 
that is, the low percentage of logic gates used. This occurs because this kind of programmable 
device has only one matrix for AND operations and other matrix for OR operations. FPGAs are 
different because they are composed of small configurable logic blocks (CLB) that work like 
sequential systems. CLBs are composed of a RAM memory and one or more macrocells. Each 
CLB RAM memory is programmed with the combinational system that defines the behavior of 
the sequential system. On each macrocell a memory element (biestable) and a configuration circuit 
are included. The configuration circuit defines the behavior of the macrocell. 
VHDL is a standard hardware description language capable of representing the hardware with 
independence of its final implementation [3]. It is also widely supported by a number of simulation 
and synthesis tools.



 

2. FPGAS AND PETRI NETS 

It is necessary to take into account the following points for implementing a sequential system on a 
FPGA: 

• The system must be divided on low complexity subsystems for integrating them on each 
CLB of the FPGA. 

• Usually, CLBs have only 4 or 5 inputs, and one or two outputs (macrocells) and 
sometimes it is necessary to achieve a strong division of the global system for integrating 
the subsystems into the CLBs. 

• CLBs are interconnected between them through buses. These buses are connected to 
configurable connection matrices that have a limited capacity. It is necessary to bring near 
one another subsystems with a strong dependence between them to optimize the use of 
these connection matrices. 

These points can be followed in many cases when implementing a Petri net. There are two kinds 
of elements in a Petri net: places and transitions. The circuit implementation of these elements is 
relatively easy, as shown in the schematics of a place and a transition in figure 1. Each one of 
these elements can be programmed in one or more CLBs following the model of figure 1. That 
would not be the most compact and efficient design, but it would be the simplest. 

 

 
 

Figure 1. - Electrical schematics of a place and a transition. Each one of them can be 
implemented on a CLB. The main problem is the low number of inputs in a CLB. Sometimes it 

is necessary to use more CLBs for each element. 
T inputs are the signals generated for the preceding transitions. 

R inputs are connected to the output of the next transitions. 
LS is the output signal of the place. 

E inputs are the system inputs involved in the transition. 
L inputs are the signals generated for the preceding places. 

TS is the output of the transition. 
 
For obtaining the most compact and efficient design, it is necessary to make the following 
transformations: 

• In the models of figure 1, each place of the Petri net is associated to one bit-state (one-
hot encoding). That is not the most compact solution because most of the designs do not 
need every combination of bits for defining all the states of the system. For instance, in 
many cases if a place is active implies that a set of places will not be active. Coding the 
place bits with a reduced number of bits will be a good solution because the number of 



 

CLBs decreases. For instance, if a Petri net with six places has always only one place 
active, it is enough to use only 3 bits for coding the active place number (binary state 
encoding). 

• Other transformation consists of implementing the combinational circuit of the global 
system, and dividing the final sequential system (combinational circuit and memory 
elements). 

These transformations are used for making compact and fast designs, but they have some 
objections: 

• When a compacted system is divided, may be too many CLBs have to be used, because 
of the low number of inputs on each CLB (4 or 5 inputs). This obstacle supposes 
sometimes to use more CLBs than dividing a non-compacted system. 

• Verifying or updating a concrete signal of the Petri net, in a compacted system may be 
difficult. It is necessary to take into account the achieved transformations, and to supply 
the inverse transformations for monitoring the signal. This problem can be exposed in 
failure tolerant systems. This kind of systems needs to verify their signals, while they are 
running. This system may be more complex if it has been compacted previously. 

To avoid the mentioned problems, this paper proposes a solution that consists in implementing the 
system using special blocks composed of one place and a transition. With this kind of blocks 
compact systems can be achieved, preserving the Petri net structure. Figure 2 shows an example 
of Petri net divided in 5 blocks. Each block is implemented in a CLB. 
 

 
Figure 2. - Example of Petri net divided in blocks for its implementation in a FPGA. 

3. IMPLEMENTATION 

With this kind of implementation of Petri net based systems, every CLB is composed of a place 
connected to a transition. The place can be activated through its inputs connected to other 
transitions. It will be deactivated through reset inputs, or through the transition that is in the block 
(figure 3). 
The transition will be active when the preceding place is active and the transition inputs have the 
appropriated values. Every block has two outputs, one state bit corresponding to the place, and a 
transition bit. 
 
 



 

 
Figure 3. - Description of the new blocks that are developed in a configurable block in a 

FPGA. On the left, a simplified digital schematic of the block is shown. 
- T is the input bits set connected to other transitions for activating the place. 
- R is the vector of signals for deactivating the place since other transitions. 

- LE are the signals coming from other places and other input signals, that let the activation 
of the transition. 

- LS is the output place. 
- TS is the output transition. 

 
Figure 3 shows logical and electronic schematics of these blocks. The place and the transition are 
interconnected through two signals in the block. These signals are not always connected to the 
exterior. This detail allows a reduction of the CLBs connections in a FPGA. In many cases a 
concrete CLB has not enough inputs for including a block of this kind. In those cases, it is 
necessary to use auxiliary CLBs for implementing the block. However, it is unusual to find a Petri 
net on which every place is preceded by a high number of transitions (or to find a transition 
preceded by many places). Usually, most places and transitions in a practical Petri net are 
connected to one or two transitions or places, respectively (except common resources or 
synchronism points). Figure 4 shows some examples on which there is an element preceded by 
many others. 
 

        
Figure 4. - Examples of different block interconnections for implementing places and 

transitions with multiple connections to other elements. 
 
There are cases on which the number of CLB inputs is not enough to include a place or a 
transition in the CLB. Figure 5 shows a logical schematic for expanding the block inputs. In this 
figure, four CLBs are necessary for implementing the block. Three of them are auxiliary blocks 
and have the function of concentrating a number of inputs in one signal. 
 



 

 
Figure 5. -  Block schematic with a high number of inputs. The logic gates connected outside 

the block place-transition are used for incrementing the number of inputs. 

4. VHDL HIGH LEVEL DESIGN 

The methodology proposed uses those blocks described above as a set of parametrizable objects 
available in VHDL libraries. The implementation is simply the interconnection, according to the 
Petri net specification, of those objects whose correctness is guaranteed. The VHDL description 
represents correctly the specification as long the Petri net does it. The resulting architecture that is 
implemented within the FPGA is OHE (one-hot encoding). 
This solution gives best results in the implementation of SRAM based FPGAs [4], at least as long 
as the number of places and the random logic associated with the transitions is not too complex 
relative to the combinational logic available in the FPGA. 

5. EXAMPLE 

Figure 6 shows the blocks interconnection of a Petri net based system on a FPGA. The example 
exposed corresponds to the net of figure 2.  
 

 
 

Figure 6. - Schematic of the connections for the Petri net of figure 1 with configurable 
blocks. 

 



 

Each block is a CLB of the FPGA, and it is not necessary to include auxiliary blocks for 
incrementing the number of inputs of the elements of the net. There is only a place with two input 
signals in the net of figure 2. The rest of places have only one input signal. If some element had 
more than two inputs, it would be necessary to use the structures of figure 4, and then the number 
of CLBs would be increased. The results of different design methodologies using a sample FPGA 
are summarized in table 1. 

Table 1 

Design method Design process FPGA resources in use
  

Device Frequency 
Achieved 

Schematic Difficult 17 % 27,62Mhz 
VDHL behavioral Simple 21 % 16,75Mhz 
This paper Simple 12 % 63,69Mhz 

6. CONCLUSIONS 

In this paper, the implementation of Petri net based systems on FPGAs has been discussed. The 
main problem consists of using places and transitions with a different number of inputs, including 
the case when there are more inputs than a configurable block of a FPGA. For that, a method has 
been developed through two circuit models, one of them for places, and the other one for 
transitions. With these models a new block has been presented that contains a place 
interconnected with a transition. The object of this block consists in reducing the interconnections 
between CLBs in a FPGA, and therefore, reducing the number of inputs on each block (specially, 
feedback signals necessary to reset preceding places). This method is optimal for Petri nets on 
which most places and transitions are preceded for one or two (but no more) transitions or 
places. Furthermore, some possibilities have been exposed for the interconnection of blocks that 
increase the number of inputs in elements of a Petri net. The main purpose of this method is to 
integrate the maximum number of elements of a Petri net in a FPGA. 
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Abstract: In this paper, a new method is proposed for the digital hardware 
implementation of Petri net based specifications. The purpose of this paper is to 
introduce a new discrete event control system paradigm, where the control system is 
modelled with extended Petri nets and implemented as an asynchronous controller using 
circuit elements. The results provided in this paper on the digital hardware 
implementation of Petri nets may be view as a better version of a previously introduced 
method [1], in terms of the implementation of transitions.  
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1. INTRODUCTION 
 
Discrete event systems (DES), examples of which include communication networks, 
manufacturing systems, robots, etc.,  exhibit properties such as non-determinism, conflict, and 
concurrency. The study (i.e. design, analysis, synthesis, etc.) of DES has been carried out 
mainly by using two modelling techniques: finite state machines (FSM) and Petri nets. FSM 
based studies suffer from so called state explosion problem. FSMs provide sequential models. 
When using FSMs graphical visiualisation of the modelled system can not be realised easily 
[2]. Petri nets have been used as an alternative formalism for the study of DESs due to their 
easily understood graphical representation in addition to their well-formed mathematical 
formalism. In this paper, we are concerned with the control of DES and we use Petri nets. The 
control of DESs is done firstly by modelling the controller as a Petri net model and then by 
implementing it in software or hardware. The implementation is carried out by simulating the 
Petri net model in terms of software or hardware structures. The software implementation has 
been done using either high level languages or low level languages. Synchronous or 
asynchronous controllers of Petri net based specifications have been  obtained as hardware 
implementation. For a detailed information on Petri nets and digital hardware design, the 
reader is referred to [3]. In an asynchronous circuit, there is no global clock, i.e. they are self 



 

timed. Asynchronous circuits can be viewed as hardwired versions of parallel and distributed 
programs. The program statements are physical components, i.e. logic gates, memory 
elements, etc. Asynchronous circuits are better than the synchronous counterparts in terms of 
performance, robustness, low power, low electromagnetic emission, modularity and re-use, 
and testability [3]. In this paper, we deal with asynchronous circuit implementation of Petri 
net based specifications. This type of implementation is carried out based on the idea of 
“physical simulation” and achieved by associating each place in the Petri net with a memory 
latch. Examples of this style can be found in [1, 4, 5, 6].  
 
In this paper, a new method is proposed for the digital hardware implementation of Petri net 
based specifications. The purpose of this paper is to introduce a new discrete event control 
system paradigm, where the control system is modelled with extended Petri nets and 
implemented as an asynchronous controller using circuit elements. The results provided in 
this paper on the digital hardware implementation of Petri nets may be view as a better 
version of a previously introduced method [1], in terms of the implementation of transitions. 
The remainder of this paper is organised as follows: The next section defines safe automation 
Petri nets (SAPN). In the 3rd section,  the digital hardware implementation of SAPN is 
explained. Finally, conclusions are given.  
 
 
2. SAFE AUTOMATION PETRI NETS 
 
Automation Petri nets (APN) have recently been introduced as a new formalism for the design 
of Discrete Event Control Systems [2]. Since ordinary Petri nets do not deal with sensors and 
actuators, the Petri net concepts are extended, by including actions and sensor readings as 
formal structures within the APN. These extensions involve extending the Petri nets to 
accommodate sensor signals at transitions and to assign level actions to places (and similarly 
to assign impulse actions to transitions). In this section, we define Safe (1-bounded) 
Automation Petri nets (SAPN) to be used for direct translation from Petri nets to circuit 
elements. A typical discrete event control system (DECS) is shown in Figure 1.(a). It consists 
of a discrete event system (DES), to be controlled and a discrete event controller (DEC). 
Sensor readings are regarded as inputs from the DES to the DEC, and control actions are 
considered as outputs from the DEC to the DES. The main function of the DEC is to 
supervise the desired DES operation and to avoid forbidden operations. To do this, the DEC 
processes the sensor readings and then it forces the DES to conform to the desired 
specifications through control actions. Petri nets can be used to design such DECs. However, 
ordinary Petri nets do not deal with actuators or sensors. Because of this, it is necessary to 
define a Petri net-based controller (Automation Petri net - APN), which can embrace both 
actuators and sensors within an extended Petri net framework. An SAPN is shown in Figure 
1.(b). In the SAPN, sensor readings can be used as firing conditions at transitions. The 
presence or absence of sensor readings can be used in conjunction with the extended Petri net 
pre-conditions to fire transitions. In the SAPN, two types of actuations can be considered, 
namely impulse actions and level actions. Level actions are associated with places, while 
impulse actions are associated with transitions. With these additional features, it is possible to 
design Discrete Event Control Systems. Figure 1.(c) shows how an SAPN can be used as a 
DEC in a DECS. 



 

 
(a)                                  (b)                                   (c) 

Fig. 1. (a). A typical discrete event control system (DECS). (b). Safe Automation Petri Net (SAPN). 
(c). APN used as a controller in a DECS. 

 
Formally, a Safe Automation Petri Net can be defined as follows: 

 

SAPN = (P, T, Pre, Post, In, En, χχχχ, Q, M0 ) 
 
Where,  
• P = {p1, p2, ..., pn} is a finite, nonempty set of places, 
• T = {t1, t2, ..., tm} is a finite, nonempty set of transitions, P ∪ Τ ≠ ∅ and P ∩ T= ∅, 
• Pre: (P×T) → {0,1} is an input function that defines ordinary arcs from places to 

transitions,  
• Post: (T×P) → {0,1} is an output function that defines ordinary arcs from transitions to 

places, 
• In: (P×T) → {0,1} is an inhibitor input function that defines inhibitor arcs from places to 

transitions, 
• En: (P×T) → {0,1} is an enabling input function that defines enabling arcs from places to 

transitions, 
• χ = {χ1, χ2, ..., χm} is a finite, nonempty set of firing conditions associated with 

transitions, 
• Q = {q1, q2, ..., qn} is a finite set of level actions that might be assigned to places or 

impulse actions that might be assigned to transitions, 
• M0 : P → {0,1} is the initial marking. 
 
The SAPN consists of two types of nodes called places, represented by circles ( � ), and 
transitions, represented by bars ( — ). There are three types of arcs used in the SAPN, 
namely, ordinary arcs, represented by a directed arrow ( ), inhibitor arcs, represented by 
an arc, whose end is a circle ( ), and finally enabling arcs, represented by a directed 
arrow, whose end is empty ( ). Directed ordinary arcs connect places to transitions and 
vice versa, while enabling and inhibitor arcs connect only places to transitions. The number of 
tokens in places represent the current state of the system and firing of a transition represents 
the movement of the system from one state to another state. Each transition has a set of input 
and output places, which represent the pre-condition and post-condition of the transition. The 
level actions (Q), may be assigned to places, and the impulse actions may be assigned to 
transitions. Level actions may be enabled when there is a token at a place, while impulse 
actions may be enabled at the instant when a transition is fired. More than one action may be 
assigned to a place or a transition. Firing conditions in the SAPN are recognised by external 
events (signals) such as sensor readings, switch positions, etc. Six firing conditions, may be 
associated with a transition t: χ, χ , ↑χ, χ , χ↓ and, χ . The firing condition χ is a Boolean 
variable that can be 0, in which case related transition t is not allowed to fire, or it can be 1, in 



 

which case related transition t is allowed to fire if it is enabled, i.e. all input places have one 
token each. The firing condition χ is the complement of the firing condition χ and is a 
Boolean variable that can be 1, in which case related transition t is not allowed to fire, or it 
can be 0, in which case related transition t is allowed to fire if it is enabled. The rising-edge-
firing-condition ↑χ is a Boolean variable that can be 0, in which case related transition t is not 
allowed to fire, or it can be 1, in which case related transition t is allowed to fire if it is 
enabled. The complement-rising-edge-firing condition χ  is a Boolean variable that can be 1, 
in which case related transition t is not allowed to fire, or it can be 0, in which case related 
transition t is allowed to fire if it is enabled. The falling-edge-firing-condition χ↓ is a Boolean 
variable that can be 1, in which case related transition t is not allowed to fire, or it can be 0, in 
which case related transition t is allowed to fire if it is enabled. Finally, The complement-
falling-edge-firing-condition χ is a Boolean variable that can be 0, in which case related 
transition t is not allowed to fire, or it can be 1, in which case related transition t is allowed to 
fire if it is enabled. The marking of the SAPN is represented by the number of tokens in 
places. Tokens are represented by black dots (•). Movement of tokens between places 
describes the evolution of the SAPN and is accomplished by the firing of the enabled 
transitions. The following rules are used to govern the flow of tokens: 
 
Enabling Rules:  
1. If the input place p1 of a transition t1 is connected to t1 with an ordinary arc Pre(p1,t1), then 

t1 is said to be enabled when p1 contains a token, i.e., M(p1) = 1. 
2. If the input place p1 of a transition t1 is connected to t1 with an enabling arc En(p1,t1), then 

t1 is said to be enabled when p1 contains a token, i.e., M(p1) = 1. 
3. If the input place p1 of a transition t1 is connected to t1 with an inhibitor arc In(p1,t1), then 

t1 is said to be enabled when p1 contains no token, i.e., M(p1) = 0.  
 
Firing Rules: In the SAPN, an enabled transition t can or can not fire depending on the 
external firing condition χ of t. These firing conditions can be either of the above mentioned 
firing conditions, i.e. χ, χ , ↑χ, χ , χ↓ or χ , namely positive level,  zero level, rising edge, 
complement rising edge, falling edge or complement falling edge of a (signal) sensor reading 
or a switch position. Broadly speaking, a firing condition of a transition t may include more 
than one sensor reading with ‘AND’, ‘OR’ and ‘NOT’ logical operators. When dealing with 
more than one sensor readings as firing conditions, the logical operators of firing conditions 
must be taken into account accordingly. In the special case, where χ = 1, transition t is always 
allowed to fire when it is enabled. When an enabled transition t fires with a related firing 
condition χ, it removes one token from each input place pi and deposits, at the same time, one 
token to each output place po. It should be noted that, the firing of an enabled transition t does 
not change the marking of the input places that are connected to t only by an enabling or an 
inhibitor arc.  
 
3. DIGITAL HARDWARE IMPLEMENTATION OF SAFE AUTOMATION PETRI 
NETS : DIRECT TRANSLATION FROM SAPN TO CIRCUIT  ELEMENTS 
 
The direct translation method from SAPN to circuit elements, proposed in this paper, is based 
on the idea of physical simulation of every Petri net marking reachable from the initial 
marking in terms of the state of the circuit. In order to achieve the direct translation, the 
following three steps are followed: i) each place in the SAPN is associated with a memory 
element, i.e. an SR-flip-flop (SR-latch), ii) each transition in the SAPN is implemented with a 



 

logical gate (NAND gate), iii) the initial marking is set-up by using an RC (Resistor and 
Capacitor) element. Let us now consider each of these three steps: 
 
i) The first step in achieving the direct translation is to use a memory element to represent the 
presence or absence of a token in a place. If there is a token in a place then the output of the 
memory element is set to 1. In contrast, if there is no token in a place then the output of the 
memory element is reset to 0. To implement this operation we use an SR-flip-flop, as shown 
in Fig. 2.(a). An SR-flip-flop is constructed from two NAND gates connected back to back. 
The cross-coupled connections from the output of one gate to the input of the other gate 
constitutes a feedback path. Therefore, the circuit is classified as asynchronous. Each flip-flop 
has two outputs; Q and Q , and two inputs; set (S) and reset (R). The truth table of the SR-flip-
flop is given in Fig. 2.(d). The application of a momentary 0 to the S input causes output Q to 
go to 1 and Q  to go to 0. The outputs of the circuit do not change when the S input returns to 
1. A momentary 0 applied to the R input causes an output of Q = 0 and Q  = 1. The state of the 
flip-flop is always taken from the value of its normal output Q. When Q = 1, we say that the 
flip-flop stores a 1 and is in the set state.  When Q = 0, we say that the flip-flop stores a 0 and 
is in the reset state. The SR-flip-flop manifests an undesirable condition if both inputs go to 0 
simultaneously. When both inputs are 0, outputs Q and Q  will go to 1, a condition which is 
normally meaningless in flip-flop operation.  In Fig. 2.(b) an SAPN is shown, in which there 
are two places;  p1 and its complement p1 , and two transitions; t1 and t2, with firing 
conditions  χ1 and χ2 respectively. This is an explicit representation of the safe place p1. The 
implementation of places using the SR-flip-flop is shown in Fig. 2.(c). Output Q of the SR-
flip-flop is used to represent place p1 and output Q  is used to represent place p1 . When there 
is a token in p1,  the SR-flip-flop is set, i.e. Q = 1 and Q  = 0. When there is a token in p1 ,  the 
SR-flip-flop is reset, i.e. Q = 0 and Q  = 1. It is assumed that the model will not permit both 
outputs becoming Q = 1 and Q  = 1. That is to say that the designer must take some action to 
assure that S = R = 0 will never occur. 
 

 

 
 
 

S    R   Q   Q  Comment 
0   1 1    0 Set 
1    1 1    0 After S = 0 and R = 1 
1    0 0    1 Reset 
1    1 0    1 After S = 1 and R = 0 
0   0 1    1 Not allowed 

(d) 

Fig. 2. a). An SR-flip-flop, b) an SAPN, c) the implementation of places.  
d). The truth table of the SR-flip-flop, 

 
ii) The second step in achieving the direct translation is to use a NAND gate to implement 
transition in SAPN. The behaviour of a transition in SAPN may be summarised as follows: IF 
there is a token each in the input places of a transition t AND the firing condition χ of t 
occurs, THEN all the tokens are removed from the input places and one token each is 
deposited to the output places of t. To show how this behaviour is implemented, the SAPN 
shown in Fig. 3.(a) is used. In this case, the transition t fires when all input places p1, p2, p3, 



 

... have one token each and the firing condition χ occurs. When t fires it removes all the 
tokens from the input places p1, p2, p3, ..., and at the same time, it deposits one token each to 
the output places, p11, p12, p13,... . To implement the transition t, the structure shown in Fig. 
3.(b) is used. In this case, when all input flip-flops are set and χ occurs t is fired by resetting 
all the input flip-flops and at the same time by setting all the output flip-flops. Please note that 
the difference between our approach and [1] is that, in [1] the removal of tokens from input 
places and adding tokens to output places has a duration and there is an intermediate state 
between the two operations, while in our approach  the removal of tokens from input places 
and adding tokens to output places is instantaneous. Fig. 3.(c) shows the implementation of 
transitions t1 and t2 of Fig. 2(c). In the SAPN, t1 fires when there is a token in p1  and χ1 
occurs. When fired, t1 removes the token from p1  and deposits a token in p1. The NAND gate 
1 implements t1 as follows: when output p1  = 1 and χ1 occurs, i.e. χ1 becomes 1, p1 is set to 1 
by applying an instantaneous 0 from the output of the NAND gate 1 to the S input of the flip-
flop and at the same time the output p1  is reset, i.e. p1  = 0. The same applies to t2 in a similar 
manner.   
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(a)                                                     (b)                                                   (c) 
Fig. 3. a). A transition in SAPN. b).Implementation of  the transition, b). Implementation of transitions 

t1 and t2 of Fig. 2.(c). 
 
iii) The third and last step is about setting-up the initial marking by using an RC (Resistor and 
Capacitor) element. It is necessary for proper functioning to set-up the initial marking before 
operating the circuit. It is a common practice to use an RC element to establish the power on 
reset (POR) and at the same time to use a button connected parallel to the capacitor such that 
at any time desired by pressing the button we are able to set the system back to the initial 
marking. The time delay τ = R.C defines how long the setting-up time will be for the initial 
marking. How this process is accomplished, is shown in Fig. 4.(a). When the power is first 
applied to the circuit, a 0 is applied, for the period of  τ time, to the S inputs of flip-flops, 
which represent places with initial marking 1, i.e. all places p1, p2, p3, ... are set to 1. At the 
same time, a 0 is also applied to the R inputs of flip-flops, which represent places with initial 
marking 0, i.e. all places p11, p12, p13, ... are reset to 0. After the power is being applied to 
the circuit, at any time it is also possible to set-up the circuit back to the initial marking by 
pressing the button B. An example SAPN is shown in Fig. 4.(b). The hardware 
implementation of the SAPN shown in Fig. 4.(b) is given in Fig. 4.(c). In this circuit places 
and transitions are implemented as described before. The initial marking, i.e. M0(p1, p1 ,p2 
, p2 ) = (1,0,0,1)T, is implemented by setting the first flip-flop and by resetting the second flip-
flop.   
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Fig. 4. a). Setting-up the initial marking. b). An example SAPN. c). Setting-up the initial marking of 

the SAPN shown in Fig. 4.(b). 
 

To show how our technique is applied to the hardware implementation of  the SAPN, in this 
paper we consider the following SAPN structures:  

• Enabling arc 
• Inhibitor arc 
• Actions 

Please, note that for the sake of simplicity the implementation of the initial marking in the 
following SAPN structures are not shown.  
 
3.1. Hardware Implementation of the Enabling Arc 
The modelling power of Petri nets can be extended by adding the ‘one testing’ ability, i.e., the 
ability to test whether a place has a token. This is achieved by introducing an enabling arc. 
The enabling arc connects an input place to a transition and is represented by a directed arrow, 
whose end is empty. The presence of an enabling arc connecting an input place to a transition 
means that the transition is only enabled if the input place has a token. The firing does not 
change the marking in the enabling arc connected places. In an SAPN, an enabling arc,  
En(p2,t2),  is shown in Fig. 5.(a). The transition t2 is fired if both p1 and p2 have one token 
each and firing condition χ2 occurs. When t2 is fired, a token is removed from place p1 and a 
token is deposited into the output place p3, but the marking of enabling arc connected place 
p2 does not change. The transition t2 is not enabled to fire, if there is no token in place p2. 
Fig. 5.(b) shows the complement places of places p1, p2 and p3. The hardware 
implementation of the SAPN shown in Fig. 5.(b) is given in Fig. 5.(c). In this circuit places 
and transitions are implemented as described before.  
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Fig. 5. a). An enabling arc, En(p2,t2), in an SAPN. b). The complement places of places p1, p2 and p3. 

c). Hardware implementation of the SAPN shown in Fig. 5.(b). 



 

 
3.2. Hardware Implementation of the Inhibitor Arc 
The modelling power of Petri nets can be extended by adding the ‘zero testing’ ability, i.e., 
the ability to test whether a place has no token. This is achieved by an inhibitor arc. The 
inhibitor arc connects an input place to a transition and is represented by an arc, whose end is 
a circle. The presence of an inhibitor arc connecting an input place to a transition means that 
the transition is enabled if the input place has no token. The firing does not change the 
marking in the inhibitor arc connected places. In an SAPN, an inhibitor arc, In(p2,t2),  is 
shown in Fig. 6.(a). The transition t2 is fired if place p1 has a token and p2 has no token and 
firing condition χ2 occurs. When t2 is fired, a token is removed from the input place p1 and a 
token is deposited into the output place p3, but the marking of inhibitor arc connected place 
p2 does not change. The transition t2 is not enabled to fire, if there is a token in place p2. Fig. 
6.(b) shows the complement places of places p1, p2 and p3. Note that the inhibitor arc  
In(p2,t2), shown in Fig. 6.(a), can be replaced by the enabling arc En(p2,t2). The hardware 
implementation of the SAPN shown in Fig. 6.(b) is given in Fig. 6.(c). In this circuit, places 
and transitions are implemented as described before.  
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Fig. 6. a). An inhibitor arc, In(p2,t2), in an SAPN. b). The complement places of places p1, p2 and p3. 

c). Hardware implementation of the SAPN shown in Fig. 6.(b). 
 
3.3. Hardware Implementation of Actions 
In the SAPN, two types of actuations can be considered, namely impulse actions and level 
actions. Impulse actions are associated with transitions and they are enabled at the instant, 
when the related transition is being fired. Level actions are associated with places and they are 
enabled when there is a token in the related place. More than one action may be assigned to a 
transition or a place. Fig.  7.(a) shows an SAPN in which there is an impulse action assigned 
to t2, and there is a level action assigned to p3. The hardware implementation of the SAPN 
shown in Fig. 7.(a) is given in Fig. 7.(b). In this circuit, places and transitions are 
implemented as described before.  
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Fig. 7. a). Actions in an SAPN. b). Hardware implementation of the SAPN shown in Fig. 7.(a). 

 
 

4. CONCLUSIONS 
 
In this paper, a new method has been proposed for the digital hardware implementation of 
Petri net based specifications. The purpose of this paper has been to introduce a new discrete 
event control system paradigm, where the control system is modelled with extended Petri nets 
and implemented as an asynchronous controller using circuit elements. The results provided 
in this paper on the digital hardware implementation of Petri nets may be view as a better 
version of a previously introduced method [1], in terms of the implementation of transitions. 
Some Petri net structures, such as join, merge, fork, conflict, toggle, select, timed-transition 
have already been implemented by using our methodology, but due to the limited space they 
are not shown in this paper. Although the implementations considered in this paper are only 
for safe APNs, it is also possible to apply our method to general APNs and use up/down 
counters to represent places, instead of flip-flops. The results reported in this paper have 
already been applied to the control of an experimental manufacturing system. Our 
forthcoming publications will be about these results. 
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solution would be useful. Such algorithm is described in the paper. The exact 
methods are also discussed. 

Key Words. Oriented graphs, circuits, verification, combinatorial tasks 

1. BACKGROUND AND THE PROBLEM STATEMENT 
Oriented acyclic graphs are widely used in applications (in logical design algorithms, for 
example), being a convenient way of specifying partial order. If partial order is required, it is 
necessary to be sure whether the graph is acyclic or it has oriented cycles (circuits). If it has 
circuits, it may be necessary to transform it into an acyclic graph by removing some arcs; and 
usually it is better to remove minimal number of arcs enough to destroy all the circuits. So the 
task [1] is formulated as follows. 

For given oriented graph remove minimal number of arcs to obtain acyclic graph. 

An alternative formulising: for given oriented graph find maximal acyclic spanning subgraph. 

This operation is called minimal decyclisation of oriented graph. Finding any acyclic 
spanning subgraph is called decyclisation. 
Decyclisation can be applied to analysis of electronic circuits (the minimal set of arcs 
removing all the circuits of graph is known in electrical engineering as minimal feedback arc 
set). Feedback is a difference between combinational and sequential logical circuits, and the 
algorithms of logical design and analysis are very different for those two kinds of circuits; of 
course the algorithms for combinational circuits are much simpler. So selecting of maximal 
combinational sub-circuit of given circuit can be useful for circuit minimisation, test 
generation and other CAD and analysis tasks. Decyclisation also can be used for analysis of 
algorithms represented by graph models, such as PERT (program evaluation and review 
technique), graph-schemes or Petri nets; for disjunction of feedback in the control systems. 
The author encountered this problem developing algorithms of optimal simulation of Petri 



nets [6]. One more area of application is deductive logic, where circuit in graph means a 
vicious circle. 

2. MAIN DEFINITIONS 
An oriented graph, or orgraph G=(V, E) is a set V of nodes together with a set E of arcs 
which are ordered pairs of the elements of V. The arc e is said to be directed from its initial 
node init(e) to its terminal node ter(e). An orgraph can be specified by its adjacency matrix R 
that is a square Boolean matrix n×n, where n=|V|; for that matrix aij=1 if and only if there is an 
arc from node i to node j. 
Number of incoming arcs for node v is its input degree and is denoted as id(v); number of 
outgoing arcs is its output degree and is denoted as od(v) [2]. 

A circuit in an orgraph is a path along the arcs of the graph originating and terminating at the 
same node. An elementary circuit is a circuit coming through every node no more than once. 
Below saying “circuit” we always mean “elementary circuit”. A circuit matrix C is a Boolean 
matrix m×p, where m – number of circuits, p=|E|; for that matrix aij=1 if and only if the arc j 
is in circuit i [5]. 

3. THE METHODS OF MINIMAL DECYCLISATION 
The known methods of decyclisation of orgraphs are summarised in [1] (see also [8]). Also 
the effects of removing arcs from orgraphs are discussed in details in [4], but the tasks 
considered there are slightly different from the task we are interested in. The methods of 
minimal decyclisation exist, but they cannot be implied to big graphs because they need 
exponential time. The main approaches are listed below. 

3.1. Method Using Adjacency Matrix 
In [1] it is shown that an orgraph is acyclic if and only if its nodes can be ordered in such a 
way that its adjacency matrix becomes strictly triangular (without non-zero elements on the 
diagonal; such ordering can be obtained by topological sorting of the graph [10]). One of the 
methods of decyclisation is based on this affirmation. Its main idea follows: transform the 
adjacency matrix by exchanging columns (and corresponding rows) to make it as close to a 
strictly triangular matrix as possible (i.e. with minimal number of non-zero elements below 
the main diagonal or on it). Obtaining the optimal solution here is a difficult combinatorial 
task; of course some heuristics can be used here to obtain an approximate solution. Advantage 
of this method is that it doesn’t require finding of all the circuits in the graph. 

3.2. Method Using Boolean Equations 
Another method is described in [1]: let’s find all the circuits in the given graph, and let’s 
associate a Boolean variable with each arc. Then for every circuit build disjunction of the 
correspondent variables (without negation) and construct conjunction of those disjunctions. 
The obtained Boolean formula is in the conjunctive normal form. Transform it into 
disjunctive normal form by usual transformations and simplifications of Boolean equations. 
Every conjunction in the resulting DNF represents a set of arcs, removing of which is enough 
to destroy all the circuits. The shortest conjunction represents the minimal set of arcs to be 
removed. 



3.3. Reducing to the Task of Boolean Matrix Covering 
It is easy to see that the method described above requires in fact finding all the possible sets of 
arcs enough for decyclisation (minimal in the sense that no element can be removed from 
those sets). That means that the method is applicable only for very small graphs. But since the 
set of all circuits in the graph is obtained, a better approach can be used here. As far as there is 
a set of circuits and it is necessary to select a minimal set of elements belonging to all the 
circuits, the task is directly reduced to the task of covering of Boolean matrix. So the general 
algorithm may consist of the next steps: 

Algorithm 1 (exact) 
1. Find all the circuits in the orgraph. 

2. Construct the circuit matrix C. 

3. Find the minimal covering of the matrix (minimal subset of columns such that every row 
has at least one non-zero element in one of those columns).  

4. Remove from the graph all the arcs corresponding to the rows of the covering. 

Finding the minimal matrix covering is a complex combinatorial task, but this approach is 
much more effective than the previous one, because there is no necessity to exhaust all the 
combinations of rows to find the optimal solution. However if finding optimal solution takes 
too much time, some heuristics may be used; exact and approximate methods of matrix 
covering are explained in details in [13].  

The algorithm finding all the circuits in an orgraph is described in [11] (firstly in [3]). Both 
tasks (finding all circuits and minimal matrix covering) are NP-complete (the number of 
circuits in a graph exponentially depends on its size), so the only practical way of solving the 
task for a big graph is using heuristics.  

4. THE HEURISTIC ALGORITHM 

4.1. Analogy between the Tasks of Decyclisation and Finding of Spanning Trees 
The task of finding of spanning tree [11] is usually considered for non-oriented graphs. The 
analogy between this task and decyclisation exists because if non-oriented cycles are 
considered, an ayclic graph turns to be a tree. In this sense, finding maximal acyclic spanning 
subgraph for an orgraph can be considered as a generalisation of the task of finding spanning 
tree for a non-oriented graph. But all the spanning trees for given graph have the same number 
of arcs; so the question of optimisation arises if the arcs are weighted and their total weight 
should be minimised or maximised. For the orgraphs that is not the case; different spanning 
subgraphs with different number of arcs may be maximal in the sense that no arc can be added 
to them without creating a circuit (Fig. 1; dashed arrows denote the removed arcs). But, as it 
is shown below, the approach used for finding minimal (or maximal) spanning tree can be 
used with some changes for finding maximal acyclic spanning subgraph of an orgraph. 

eee c)b)a)  
Figure 1. An orgraph (a) and its different acyclic subgraphs (b,c) 



4.2. The Main Idea and Heuristic 
An effective heuristic algorithm for decyclisation cannot require finding all the circuits in the 
given graph (a NP-complete task). So it is intuitively clear that a heuristic algorithm can build 
gradually an acyclic subgraph of the given graph. The same approach is used in [7] (Kruskal 
algorithm); but for a weighted non-oriented graph and the task of minimal spanning tree 
finding it allows obtaining the optimal solution, and for our task the solution will be 
approximate. The idea is, to start from any node of the given graph and to build an acyclic 
graph by adding the arcs such that the subgraph remains acyclic. But to direct this process and 
to avoid some non-optimal variants, the weights should be associated with the arcs of the 
given graph. We need a simple formula of calculating weights. And the evident way to do it is 
to use input and output degrees of initial and terminal nodes for each arc.  

How to use these data? Let’s consider some examples. It is easy to see that we should avoid 
adding to the spanning subgraph the arcs like the arc e at Fig. 1. That is an arc belonging to 
many circuits, so its presence in the subgraph would mean that several other arcs cannot 
simultaneously be there, and the obtained solution will be far from optimal. We don’t know 
however the number of circuits each arc belongs to. (If it would be known the approach of 
removing the arcs belonging to the maximal number of circuits would be equivalent to one of 
the heuristic methods of matrix covering; but building the circuit matrix would require finding 
all the circuits). But what can be said about it by analysing input and output degrees? 

If the terminal node has many outgoing arcs, and the initial node has many incoming arcs, that 
means that it belongs to many paths (and maybe circuits), and probably that it is the only arc 
common to all those paths (or one of the few ones). That means that it is undesirable to add 
this arc to the spanning subgraph. On the other hand, if the terminal node has many incoming 
arcs, and the initial node has many outgoing arcs, we may suppose that there are many circuits 
and if they have common arcs then somewhere else; so the arc under consideration can be 
added to the subgraph. 

This intuitive reasoning can be expressed by the next formula: 

))(())(())(())(()( eterideterodeinitodeinitidew −+−=      (1) 

where e is an arc and w(e) is its weight. 

Then it is enough to create a spanning subgraph starting from the arc with minimal weight and 
adding also the arcs with minimal weights such that the subgraph remains acyclic. When no 
arc can be added to the subgraph, removing the rest of arcs from the given orgraph solves the 
task of decyclisation. 

Here it is necessary to check at each step whether the subgraph is acyclic. It is an easy task for 
both oriented and non-oriented graphs; a graph has a cycle if and only if its depth-first-search 
tree contains a feedback arc. It can be checked by transitive closure of the relation specified 
by the given graph [12]. 

4.3. Formal Description of the Algorithm 
Algorithm 2 (heuristic) 

Let G=(V, E) be the given graph. G’=(V’, E’) such that V’=V, E’=∅. S=∅. 

1. While ∃ v∈V: (id(v)=0 ∨ od(v)=0) 

1.1. E ← E\{e∈E: v∈e}.* 

                                                 
* Such operation is useful also for exact algorithm; the removed arcs certainly don’t belong to any circuit. 



2. Calculate for every arc e∈E its weight according to (1). 

3. While (E\S≠∅) 

3.1. e ← min(w(e): e∈(E\S)); 

3.2. S ← S∪{e};  

3.3. E’ ← E’∪{e}; 

3.4. If G’ has a cycle then E’ ← E’\{e}. 
4. (E\E’) is a set of arcs, removing of which is enough for destroying all circuits in G. The 

end. 
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Figure 2. Examples of decyclisation 

5. EXAMPLES 
Let’s consider some examples (Fig. 2). The graphs are taken from [4]. In all those cases the 
approximate algorithm finds the same solution as the exact one, i.e. the optimal solution. 
Weights of the arcs are shown near the arcs at Fig. 2. Note that we calculate weight for an arc 
not counting the arc itself for defining input and output degrees; so all the weights at Fig. 2 



are 2 less than according to (1). That seems to be more convenient and doesn’t affect to the 
results. 

We can see that arcs with maximal weights can be used as the important indication for 
decyclisation. Consider Fig. 2a. Gradual building of acyclic spanning subgraph goes on as 
follows: at first the arcs with weight 1 are added to G’; it remains acyclic. Then one arc with 
weight 2 is added there; G’ is still acyclic but no more arc can be added to it. So the decision 
is found, and it is optimal. Similar situation is with graphs shown at Fig. 2b and 2c; they are 
not explained in details because of lack of space. 

6. CONCLUSIONS 
The suggested approach allows quick obtaining of good approximate solutions of the task of 
decyclisation of oriented graphs. It can be applied to various problems such as Petri net 
analysis, minimisation and test generation for sequential circuits (by decyclisation these tasks 
can be reduced to the similar tasks for combinational circuits) and others, mentioned in 
Background and the Problem Statement. Statistical analysis of the method effectiveness is a 
topic of future work. 
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Abstract. In this paper a design methodology based on interpreted Petri nets is applied to the
functional verification of complex sequential control paths. Starting from a Petri net model with
free choice structure and control engineering interpreted (CEI) net components, the verification of
structural and behavioural properties as well as functional simulation is performed. A series of
analysis strategies is derived to enable an automatic functional verification of a Petri net model.
From the results of functional verification a set of modeling guidelines could be provided.

Keywords. Petri net, digital design, functional verification, sequential control path.

1. PETRI NET BASED DIGITAL SYSTEM DESIGN

To model digital systems using Petri nets, one has to make two important choices concerning the net
specification and the net interpretation. The variety to model a system in a structural way is determined
by the net specification. By means of ordinary Place/Transition Petri nets it is simple to express both
sequential and concurrent events. In particular the structural sub class of Free-Choice Petri nets (FCPN)
that covers state machine and marked graphs provides clear structural modeling facilities. A compre-
hensive overview regarding net classes and its properties can be found in [7]. On the other hand the
chosen net specification should enable the application of analysis methods for structural and behavioural
net analysis. In this respect FCPN are particularly suitable too. Many results of Petri net theory can be
efficiently applied to analyze properties of FCPN.

1.1. Modeling digital systems using CEI Petri nets

Due to net interpretation, the components of a Petri net are assigned to components of a digital sys-
tem. Hence every net interpretation of a Petri net creates a Petri net model. There exist several net
interpretations in different technical domains that either map Petri net components to elementary digital
components or small sub nets to digital modules [8, 6, 1]. In [5] Control Engineering Interpreted (CEI)
Petri nets have been introduced. This net interpretation performs a direct mapping between a system of
communicating finite state machines and a hardware realization as shown in figure 1.

A CEI Petri net �����	��
 is defined as a tuple �����	��

�����������	���������	������ "!��$#&%'�)(*��+,�	-.�)/0!$�)/��21 .
Every transition 3�4 is assigned to an AND-gate and every place 564 is assigned to a memory cell. Conse-
quently, a marked place 5748�9�;:�4��	<24=1 symbolizes an active memory cell. Transition activating and place
marking are realized by two mappings />! and /�� . So, in addition to the usual firing rule, transitions
are activated by guards (?4 . These guards arise from logically conjuncted input signals @A4 and express
signal processing in a digital system. Output signals <B4 can be used to enable state transition 564.CD5FE
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Figure 1: CEI Petri net and its hardware realization

or for output signal processing. In case of state transition, < 48� 	 is conjuncted with ( E at an arbitrary
transition 3"E . Then 5 4 gets low before 5 E gets high and hence a new state is activated. Concurrent be-
haviour is represented by different state memory modules, each of sequential behaviour, communicating
through shared transitions. The signal transition in a CEI Petri net shows that the token flow of the Petri
net equivalently represents the signal flow of the digital system.

This is one of the major objectives in the hardware design methodology proposed in [2]. By means
of CEI Petri nets with Free-Choice structure it is possible to model digital systems in a transparent
way, such that system behaviour is equivalently reproduced by a simple structured Petri net model.
Furthermore, behaviour and structure of the Petri net model is extensively analyzable if the Petri net
model is retransformed into a FCPN. Therefore all transition guards (*4 are eliminated.

To summarize at this point the approach of this work can be schematized as in figure 2. Starting
with net specification FCPN and net interpretation CEI Petri net the modeling process can be performed.
Afterwards the Petri net model is unannotated to a FCPN to enable net analyses. Results obtained by net
analysis should be interpreted for the Petri net model to conclude a statement concerning its functional
verification.

1.2. Petri net based design flow

Owing to high acceptance of commercial CAE-Systems and hardware description languages (HDL) it is
not preferable to create a design flow that solely is based on Petri nets. Therefore in the design flow two
entities enable a transformation between constructs of a HDL and Petri net components and vice versa.
Consequently, there are several opportunities to specify a digital system. On top of figure 3 HDL in-
put as well as graphical or textual Petri net input is proposed. For large designs high level Petri nets
(HLPN) such as hierarchical Petri nets or colored Petri nets can be incorporated if it is possible to unfold
the HLPN to a low level Petri net as FCPN. Once a Petri net model is created simulation and analysis
methods can be applied to verify the design functionally. At this point Petri nets have two great advan-
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Figure 2: Modeling and verification of digital systems using Petri nets

tages. First because of its graphical concepts rough design errors can be detected easily by functional
simulation. Beyond that an exhaustive analysis of structural and behavioural properties leads to a formal
design verification rather than simulation of test pattern. A functionally verified design is transformed
to dedicated HDL constructs to enable logic synthesis by means of conventional CAE tools. After logic
synthesis simulation and analysis methods can be applied again to simulate and verify the timing be-
haviour of the design. Now deterministic and stochastic timed Petri nets are applied.
Thus it is shown that the design flow is based on Petri nets but nevertheless is embedded in a conven-
tional design flow. To put the new design steps into practice the tool development environment “Petri
Net Kernel (PNK)” [4] and the “Integrated Net Analyzer (INA)” [9] are used.
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Figure 3: Design flow for Petri net based digital system design



2. FUNCTIONAL VERIFICATION OF PETRI NET MODELS

For functional verification of a modeled digital system a set of properties are studied by means of Petri
net analysis. The analysis results are interpreted as properties of Petri net model. In a more practical way
it is necessary to propose some requirements and goals that must be obtained for functional verification.
Then a series of analysis strategies is derived to enable an automatic detection, localization and removal
of modeling errors. As an outcome of applied analysis strategies some modeling guidelines could be
derived. Adhering to these modeling guidelines enables approaching a functionally correct design al-
ready at early modeling cycles. In this work analysis strategies and modeling guidelines for functional
verification of sequential control paths are suggested.

2.1. Requirements and Goals

Requirements for functional verification are expressed as Petri net properties of the analyzed Petri net.
Net analysis is performed with the aid of tool INA as structural analysis and as reachability analysis.
At first Petri net analysis has to ensure boundness and especially 1-boundness. In the Petri net model
boundness determines that the modeled design has a finite state space. Control paths with an infinite
number of states are not close to reality. Moreover 1-boundness is claimed, since the digital system
should be modeled in a transparent way. If every place of th Petri net contains at most one token, logical
values “high” and “low” are distinguishable for the memory cells that are represented by places. An
unbounded Petri net is not analyzable any further. Liveness is the next necessary Petri net property for
functional verification and it is interpreted as the capability to perform a state transition in any case.
Every transition of the Petri net can be fired at any reachable marking. So if liveness is preserved the
Petri net and thus the Petri net model are not deadlocked. If in a live Petri net the initial state is reachable
then the Petri net is reversible. To reflect the structure of a sequential control path the Petri net should
have state machine structure. In this case not any transition of the Petri net is shared. Every transition
has exactly one predecessor place and one successor place. Therefore in a state machine generation and
consumption of tokens is avoided. Complex sequential control paths such as control path of a sequential
microprocessor consist of a system of strongly connected state machines. That includes decomposability
into small partial nets with state machine structure. When a Petri net is 1-bounded, live and it has
state machine structure then a very transparent Petri net model has been created. Every state in the
Petri net model can be assigned to a state of the control path. Thus the reachability tree is rather small
and represents exactly the number of control states. From the implementation point of view this state
encoding is called one hot encoding.

Places with more than one successor transition generate conflict situations. If several post-transitions
of a marked place are enabled and one transition fires, then all other transitions are disabled. Hence the
Petri net is not persistent and also it is not predictable what transition will fire. Transition guards are able
to solve conflicts because it represents an additional firing condition that is required to perform a state
transition. So transitions in conflict can get unique using transition guards and no behaviour ambiguity
remains. When a pre-place of a transition also appears as its post-place then there is a self loop in the
Petri net. Self loops can give a structural expression to model external signal processing distinctly. It
has to be clarified in the modeling process if any and which self loops are desired to emphasize external
signal processing. Thus self loops can be detected and assigned to that situations and others are marked
as modeling errors and should be removed.

2.2. Analysis Strategies

Table 1 summarizes all derived analyses strategies regarding detected modeling errors and affected Petri
net properties. An automatic verification of Petri net models using � 	������ ��� can be performed according
to figure 4. Using PNK and INA the analysis is efficiently implementable. It is supposed, that at “Start” a



reachability tree is derived or at least a part of it to determine boundness or unboundness of the analyzed
Petri net. Strategy � 	 detects shared transitions with more than one post-place or transitions without
pre-place that cause unbounded places and hence an unbounded Petri net.

Strategy S1:
1. If Petri net � is unbounded, then

(a) Determine all shared transitions ��� , �������	� ��
 by means of �
����������������� generate list ��� �� � .
(b) Determine transitions without a pre-place !��"�$# by evaluating ���������%���&�(' .

2. Check ���&)*�
�����������+�,� : if ���-�.��� �� �0/ ���&)1!����$#1�2��� is unbounded. Pre-transition ��� of place ���
produces tokens if ���3�4��� �� � or ���5)6!����$# and hence unboundness of ��� is caused by ��� .

�87 and �89 are applied to detect and localize dead transitions that caused by lack of strong connect-
edness or by shared transitions with more than one pre-place. It is possible that the analyzed Petri net
is 1-bounded and live but it shows no state machine structure. In this case all generated tokens are con-
sumed within a marked graph, that is a Petri net structure in which no place is shared. Strategy �;: is
applied to localize such shared transitions. By means of strategy �8< ����� �>= dead transitions are detected
and localized caused by one sided nodes as mentioned in the table. In the last two analysis strategies
�8? and ��� transition guards are used to interpret conflicts and self loops within the Petri net model. A
detailed description of all analysis strategies and its application within a case study is given in [3].
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Figure 4: Application scheme of derived analysis strategies

According to the proposed analysis strategies it is possible to derive modeling guidelines that affect the
modeling process and assist the designer to create a system model reflecting the desired functionality.

Modeling Guidelines:

1. Avoidance of shared transitions.
2. Avoidance of one-sided nodes.
3. Ensuring strong connectedness.
4. Removal of conflicts using transition guards:

(a) All post-transitions of a shared place are provided with guards.
(b) Every post-transition of a shared place is provided with an unique guard.



analysis strategy modeling error affected property

S1 generation of tokens or boundness
transition without pre-place

S2 not strongly connected liveness
S3 consumption of tokens state machine structure, liveness
S4 generation and consumption of tokens state machine structure
S5 transition without post-place state machine structure, liveness
S6 place without pre-transition liveness
S7 place without post-transition liveness
S8 self loops pureness
S9 conflicts static & dynamic conflict free

Table 1: Summary of analysis strategies

3. CONCLUSIONS
This work introduces a Petri net based hardware design methodology for modeling and functional veri-
fication of digital systems. System modeling is performed by means of Free-Choice Petri nets (FCPN)
and control engineering interpreted (CEI) Petri nets. Using Petri net analysis techniques functional ver-
ification of Petri net models is obtained by analysis of Petri net properties and a suitable interpretation
concerning the Petri net model. It is shown that a Petri net based design flow can be embedded in a
conventional hardware design flow. For the functional verification of sequential control paths a series of
analysis strategies is provided. Using these analysis strategies it is possible to detect and localize model-
ing errors automatically. Finally a set of modeling guidelines is determined to avoid modeling errors at
early design cycles.
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Abstract. This paper addresses the use of hierarchical model structuring 
mechanisms for the design of embedded systems (in the sense of reactive real-time 
systems), using Reactive Petri nets. Relevant characteristics of Reactive Petri nets 
are briefly presented and their main roots are identified, namely Coloured Petri 
nets, Interpreted and Synchronised Petri nets.  
Two structuring techniques will be presented. The first one concerns with the 
integration of bus signals representation into non-autonomous Petri net models 
and the second one with a graphical structuring mechanism named by horizontal 
decomposition. This mechanism relies on the usage of macro-nodes, which have 
sub-nets associated with them. Three types of macro-nodes were used: macro-
place, macro-transition and macro-block. The execution of the model is 
accomplished through the execution of the flat representation of the model.  
At the end, a case study is presented around a controller of a 3-cell FIFO system. 
High-level and low-level Petri net models were used and compared for that 
purpose. The implementation of the referred controller was done using 
programmable logic devices, namely PALs and CPLDs. 

Key Words. Petri nets; Hierarchical structuring mechanisms; Programmable 
Logic Devices 

1. INTRODUCTION 
It is widely acknowledged that the support for specific model structuring mechanisms is of the 
most importance for a complex system designer. In this sense, the use of techniques to build 
up compact models through the use of a “divide to conquer” strategy are commonly accepted 
as necessary. Common techniques use different levels of abstraction enabling the construction 
of the model in an incremental way. 

From the point of view of the hardware design, the concepts of modular modelling have been 
widely used for several decades. Also from the point of view of software design, the effects of 
structured programming, modular programming and of object-oriented programming have 
been supporting the reusability and robustness of code. Complementarily, the use of data 
structures could help towards compactness and expressiveness of the produced specification. 



These concepts and tendencies have been ported for the Petri net family of formalisms 
through a large number of proposals integrating hierarchies and modularity into Petri nets [4] 
[3] [1] [2]. Some of them support translation into simpler models (which means that they have 
the same modelling power), while other ones do not. 

From our point of view, the concepts proposed in [4] are of major importance, namely 
substitution transitions (probably the most used hierarchical structuring mechanism; it is also 
used in Coloured Petri nets [1] and in Design/CPN, the most used Petri net tool), and 
substitution places (this mechanism plays a dual role related with substitution transitions; the 
execution of the model is accomplished through the flat model obtained after the fusion of the 
two-levels of nets. It is important to stress that it is not allowed to directly connect a 
substitution place to a substitution transition; although already identified in [4], it was 
considered there not to be a serious restriction. We disagree with that assumption. 

This paper does not present, or use, some other important model-structuring mechanisms. 
Among them, one can mention the concept of depth, extensively used in Statecharts, and 
integrated in Reactive Petri net class [2] (which led to the concept of vertical decomposition 
structuring mechanism). 

2. ABOUT REACTIVE PETRI NETS 
This section briefly presents a non-autonomous high-level Petri net model, referred as 
Reactive Petri net model (RPN) [2]. In the following paragraphs, the model characteristics 
will be briefly presented in a non-formal way, around two components: the autonomous and 
the non-autonomous parts. In what concerns with the autonomous part of the model, Coloured 
Petri nets is the reference model [1]. The transition firing semantics is also similar. 

The non-autonomous part in its turn can be divided in two main parts: input-output modelling 
and other execution issues. In the second group, one can found priorities associated with 
transitions, automatic conflict resolution and time modelling. From the point of view of this 
paper, only the input modelling is relevant. Interpreted and synchronised Petri nets [5] 
constitute the references to the input and output modelling. In this sense, input is modelled 
through event conditions associated to transitions. Output actions can be associated to 
markings or to transition firings. 

The transitions firing rule was changed so as to consider the new input dependency. As such, 
for a transition to fire it must fulfil two conditions: it must be enabled, by the existence of a 
specific binding of tokens presented in the input places, and it must be ready, the external 
input evaluation must be true. Every transition enabled and ready will be fired. This means 
that the maximal step is always used. It is the followed approach in the synchronised Petri 
nets and interpreted Petri nets models. 

3. PROPOSED HIERARCHICAL STRUCTURING MECHANISMS 
Most of the known hierarchical structuring techniques emphasises the autonomous part of the 
model. Also, most of them use the flat model for the execution of the model; in this sense, the 
hierarchical structure is not reflected at the implementation level. This is also the case for the 
structuring mechanisms proposed in this paper. 

3.1. From signals to buses support 
Explicit modelling of interdependencies between the autonomous and non-autonomous parts 
of the model can be obtained in two situations: 



• case I):  binding variables can be used in event conditions;  
• case II):  input signals can be used in arc inscriptions, which implies that input signals 

can determine characteristics of coloured tokens. 

From the designer point of view, this characteristic could be of major interest in terms of the 
compactness of the produced model. It has to be stressed that it is possible to find a flat model 
that is behaviourally equivalent to the model with mutual-dependent attributes, as far as the 
cardinality of the variables involved in those cross-references is finite. This will also be 
shown in the following paragraphs. 

Case I situation is presented in Figure 1(a). There, a vector of input signals a[i] is associated 
with one transition. The specific binding of the tokens may select a specific input signal from 
the array. The flat model can be found replicating the transition as well as the arcs and 
inscriptions by a factor equal to the number of elements of the vector (two in the figure). The 
Figure 1(b) shows the flat model behaviourally equivalent to the model of Figure 1(a). 
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Figure 1 - Translation of specific inscriptions into flat models. 

Case II situation is presented in Figure 1(c), where an external event will impose part of its 
own characteristics into generated tokens coloured attributes. The example models the 
synchronisation between a local activity (represented by p1 marking) and an external activity 
that emits an event with some attached information (in the example, two possible values are 
considered). The Figure 1(d) shows the behaviourally equivalent flat model. It has to be 
stressed that one needs to know in advance the type and cardinality of the external 
information in order to be able to produce the behaviourally equivalent flat model. 

3.2. Horizontal decomposition 
The horizontal decomposition mechanism is defined in the “common” way used by top-down 
and bottom-up approaches, supporting refinements and abstractions, and is based on the 
concept of module. The module is modelled in a separated net, stored in a page; every page 
may be used several times in the same design. The pages with references to the modules are 
referred as super-page (upper-level pages), while the pages containing the module model are 
referred as sub-pages (lower-level pages). 

The execution of the model is accomplished through the flat model, which was the motivation 
for the naming of this decomposition type. This type of hierarchical decomposition only uses 
autonomous characteristics of the model. So, in this sub-section, non-autonomous 
characteristics, like signals, are irrelevant. 

The nodes of the net model related with hierarchical structuring are named by macro-nodes. 
Three types of macro-nodes are foreseen: macro-place, macro-transition (also used by 
Hierarchical Coloured Petri nets [1]) and macro-block. Every macro-node will have an 
associated sub-page that can be referred as a macro-net. Distinctive graphical notations are 
used for the representation of macro-nodes: macro-places are represented by a double circle 



(or ellipse), macro-transitions by a rectangle and macro-blocks are represented half-macro-
place and half-macro-transition. Due to space limitation, detailed examples are not presented, 
nor associated detailed semantics. 

A macro-place corresponds to a (macro-)node where all the arcs are connected to transitions, 
which means that the boundary of the macro-net (i.e. of the sub-page) is composed by a set of 
places. A macro-transition corresponds to a (macro-)node where all the arcs are connected to 
places. This means that the boundary of the sub-net should be composed by transitions; 
however, due to the necessary coloured binding evaluation for those transitions, the actual 
connections to input places and arc inscriptions are needed. So, in the sub-page associated 
with the macro-transition, references to places of the super-page have to be included. 
However, from the point of view of the execution of the model, the places connected to a 
macro-transition exist only at the super-page level; the places presented at the sub-page are 
void and will be merged with the associated places at the super-page.  

As far as one macro-transition can not be executed like an ordinary transition and also that a 
macro-place cannot be considered as an ordinary place (which means that it cannot hold a 
marking), they act just as a graphical modelling convenience enabling the designer to 
structure the graphical model in an expressive way. In this sense, it is interesting to consider 
the use of graphical modules that can have arcs to/from places and transitions at the same 
page. They correspond to modules in a more general way and we name them macro-blocks. 
As far as this representation is not an executable specification (at this level), the bipartite 
intrinsic characteristic of Petri nets is not violated. 

The following steps compose the merging process of the sub-page into the super-page: 
• References of places and transitions used by the sub-page will be eventually changed in 

order to produce unique labels; 
• One copy of the sub-page is inserted at the super-page; the macro-node reference is 

removed; 
• The arcs connected with a macro-place semantics are connected to the referred 

boundary place; for arcs connected with a macro-transition semantics, void boundary 
places of the sub-page are merged with the associated places at the super-page (arcs and 
associated arc inscriptions in the sub-page are kept). 

The interface of the macro-net (i.e. of the sub-page) is composed by a set of boundary places. 
As referred, this set of places will constitute the glued points between the sub-page and the 
super-page. However, when the sub-page boundary place is associated with a macro-place (or 
with a connection to a place in a macro-block), the boundary place is a common place (in the 
sense, that it can be marked, for instance). If the sub-page boundary place is associated with a 
macro-transition (or with a connection to a transition in a macro-block), the boundary place is 
a void place (in the sense, that it can not be marked, for instance). This characteristic allows 
the direct interconnection of macro-nodes, which can be of most interest in real-world 
applications, as we will try to emphasise in the following section. 

4. CASE STUDY 
An example illustrating the application of the proposed macro-nodes is presented. It is a 3-cell 
FIFO (first-in-first-out) system controller for assembly activities, referred in [2]. The 
assembly cell system has a conveyor to transport objects to the different cells. Each cell has 
presence sensors to detect objects on its in- and outputs, connected to the variables in[1..3] 
and out[1..3]. Each cell also has conveyor movement control, through the variables 
move[1..3].  



Figure 2 shows a simplified characterisation of the system controller, and two Reactive Petri 
net models as well. At the right hand side model, coloured characteristics support an easy 
modification of the model to accommodate a different number of cells. In the simplified 
model at the centre, a module-centric model based on the cell concept is presented; each cell 
is modelled by a macro-block. Associated detailed low-level model can be found in Figure 3. 
The usage of macro-blocks enables a more intuitive modelling and direct interpretation of the 
corresponding systems presented at the plant. 

IN[1..N+1]

OUT[1..N]

MOVE[1..N]

CONTROLLER

ta b1 = Cel

pb
pa ppa

ppb

b2 = Cel

pb
pa

b3 = Cel

pb
pappa ppa

ppb ppb

Conveyor
free

Conveyor
moving

Conveyor
stopped and
busy

Feeding Redraw

Product
processing

Cell
Free

<i>

<i>i=1

<i><i>

i

IF <i>
THEN MOVE[i]

<i>

<i> <i>

<i>

<i>
<i>
<i>i=N

<i>
<i>

<i+1>

<i>i<N

<i>

<i+1><i>

<i>

<1>
<2><3>

<1>
<2><3>

<i>

OUT[ i]=0

pa

pe

pd pg

ph
pc

pb

pf

th

ta

tetg

td

tb

tftc

Number o f cells N = 3

IN[i+1]=0

OUT[i]=1

IN[ i+1]=0

IN[i]=1

IN[i+1]=1IN[i+1]=1
OUT[i]=1

IN[1..N+1]

OUT[1..N]

MOVE[1..N]

CONTROLLER

ta b1 = Cel

pb
pa ppa

ppb

b2 = Cel

pb
pa

b3 = Cel

pb
pappa ppa

ppb ppb

Conveyor
free

Conveyor
moving

Conveyor
stopped and
busy

Feeding Redraw

Product
processing

Cell
Free

<i>

<i>i=1

<i><i>

i

IF <i>
THEN MOVE[i]

<i>

<i> <i>

<i>

<i>
<i>
<i>i=N

<i>
<i>

<i+1>

<i>i<N

<i>

<i+1><i>

<i>

<1>
<2><3>

<1>
<2><3>

<i>

OUT[ i]=0

pa

pe

pd pg

ph
pc

pb

pf

th

ta

tetg

td

tb

tftc

Number o f cells N = 3

IN[i+1]=0

OUT[i]=1

IN[ i+1]=0

IN[i]=1

IN[i+1]=1IN[i+1]=1
OUT[i]=1

ta b1 = Cel

pb
pa ppa

ppb

b2 = Cel

pb
pa

b3 = Cel

pb
pappa ppa

ppb ppb

Conveyor
free

Conveyor
moving

Conveyor
stopped and
busy

Feeding Redraw

Product
processing

Cell
Free

<i>

<i>i=1

<i><i>

i

IF <i>
THEN MOVE[i]

<i>

<i> <i>

<i>

<i>
<i>
<i>i=N

<i>
<i>

<i+1>

<i>i<N

<i>

<i+1><i>

<i>

<1>
<2><3>

<1>
<2><3>

<i>

OUT[ i]=0

pa

pe

pd pg

ph
pc

pb

pf

th

ta

tetg

td

tb

tftc

Conveyor
free

Conveyor
moving

Conveyor
stopped and
busy

Feeding Redraw

Product
processing

Cell
Free

<i>

<i>i=1

<i><i>

i

IF <i>
THEN MOVE[i]

<i>

<i> <i>

<i>

<i>
<i>
<i>i=N

<i>
<i>

<i+1>

<i>i<N

<i>

<i+1><i>

<i>

<1>
<2><3>

<1>
<2><3>

<i>

OUT[ i]=0

pa

pe

pd pg

ph
pc

pb

pf

th

ta

tetg

td

tb

tftc

Number o f cells N = 3

IN[i+1]=0

OUT[i]=1

IN[ i+1]=0

IN[i]=1

IN[i+1]=1IN[i+1]=1
OUT[i]=1

 
Figure 2 - N-cell FIFO system model. 

The final goal is to implement the referred controller through a programmable logic device 
(PALs or CPLDs). As far as it is not possible to use a systematic direct translation procedure 
from high-level nets to hardware implementation, several possibilities were analysed to 
accomplish the goal. 

Using the horizontal decomposition mechanism, it is possible to model the system in different 
ways, using high-level or low-level nets. Due to space limitations, it is not possible to present 
different examples. One is briefly presented considering the use of low-level Petri nets, where 
an equivalent model was obtained; it is presented at Figure 3. Three areas are identified 
associated with the different cells (which means to a different token in terms of the initial 
model). 

Although the example complexity is relatively low, and so no general conclusions could be 
taken, different possible solutions were implemented and tested using PLDs (simple PLDs 
like PALs and CPLDs 9536 and 95108 from Xilinx). Possible implementation strategies rely 
on the following attitudes: 
• Start with the coloured model and build up the associated space state, which is 

behaviourally equivalent to the original model; then implement the associated state 
machine in hardware using well-known techniques; 

• Unfold the coloured model into low-level nets (as the one presented in Figure 3), using 
automatic tools; with the low-level model, different approaches are possible: 
o direct implementation based on direct translation of each node into hardware structure 

(translating places by memory elements and transitions by combinatorial logic); 
o indirect implementation based on the associated state space; 
o partitioning of the model, based on the net characteristics, and parallel implementation 

of the several parts. 

Among the different solutions tested and associated with the last referred method, for instance 
the development of a hardware module associated with the macro-blocks presented in Figure 
2 (centre), one other was based on place invariant computation. In the referred example, based 



on the model of Figure 3, one can get four invariants with very interesting characteristics: i) 
the four place invariants cover all the places of the net, and ii) each invariant can be seen as a 
state machine (as far as only one and only one place of the invariant is marked at a time). In 
this sense, the implementation of the system can be based on the partitioning of the model 
into four concurrent state machines, which were trivially implemented in a PLD. 
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Figure 3 - Low-level representation of the 3-cell FIFO system. 

5. CONCLUSIONS 
In this paper, Petri net-based digital systems design was addressed. Two techniques were 
presented towards a better model structuring. Their usage was successfully validated through 
an example of a controller for a low-to-medium complexity system, which was implemented 
based on programmable logic devices (PALs and CPLDs). The first technique introduces the 
representation of arrays of signals into the Petri net model, while the second one uses the 
concept of module, which can be used associated with special kind of nodes, named by 
macro-nodes. Three kinds of macro-nodes were proved to be of interest. 
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controllers in Field Programmable Logic (FPL). The main goal of the proposed 
design methodology is to preserve the direct, self-evident correspondence among a 
control interpreted Petri net and its possible hardware implementations. The 
symbolic specification of Petri net is considered in terms of the local state changes, 
which are distinguished by means of separated transitions, with their input and 
output places. Decision Rules are given as a set of Gentzen logic sequents (formal 
behavioural assertions). The initial specification, which is given in the form of 
symbolic logic expressions, may be verified, and then transformed into an 
intermediate format, which is accepted by industrial, VHDL- based, CAD tools. 
The logic (Boolean) expressions, which are suitable for direct mapping into FPGA 
or CPLD, can be also derived. 
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1. INTRODUCTION 
The well-structured formal specification, which is represented in the human-readable 
language, has a direct impact on the validation, formal verification and implementation of 
digital microsystems in Field Programmable Logic (FPL). The declarative, logic-based 
specification of Petri net can increase the efficiency of the Concurrent (Parallel) Controller 
design [1,4,8,14].  

The model of concurrent state machine [4] is considered here inside the concept of sequent 
automaton and parallel automaton developed by Zakrevskij [16]. In the presented view, a 
control automaton, with distinguished, discrete and composite states, is also treated as a 
dynamic inference system, based on Gentzen logic [1]. The symbolic sequents-axioms may 
include some elements, taken from temporal logic [1,14]. The state space graph of controller 
is considered as a description of a discrete transition system [10]. Statements about the 
functionality of the designed system (behavioural axioms) are represented by means of 
sequents-assertions, forming the rule-based decision system. Complex sequents are formally 



transformed into the set of equivalent sequent-clauses (simple sequents in [16]), which are 
very similar to the production rules [14]. 

At the beginning of design process, we use the control-oriented Petri net-based initial 
specifications of dedicated, reactive discrete-event systems (or Sequential Function Chart [3]). 
After analysis of some behavioural and structural properties of Petri net, a discrete-event 
model is related with a knowledge-based, textual, descriptive form of representation. The 
syntactic and semantic compatibility between Petri net descriptions and symbolic conditional 
assertions are kept as close, as possible. The  formally transformed decision rules are directly 
mapped into VHDL statements. The Logic Controller is implemented in Field Programmable 
Logic, as a FPGA based reprogrammable unit. The automatic synthesis with VHDL oriented 
tools [2,3,10,15], as well as formal verification techniques and their efficiency 
[6,7,11,13,14,16], are out of the scope of the paper. The paper presents only the outline of 
formal methodology for Application Specific Logic Controllers (ASLC) design. The previous 
work on that subject has been recently summarised in papers [2,3,4].  

2. DISCRETE EVENT CONTROL SYSTEM 
As an example we have selected the simplified version of Logic Controller behaviour taken 
from papers [2, 3]. The chemical reactor V3 is fed with two kinds of liquids from measuring 
vessels V1 and V2. After the reaction between the liquids is completed, the reactor V3 is 
discharged. When the reactor V3 is empty, the process starts again from its initial state. To 
ensure complete reaction stirrer M agitates the process liquid in the reactor. Figure 1 shows a 
block diagram of the controlled system. 
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Fig. 1. The controlled part of discrete systems 

3. BASIC THEORETICAL MODEL 
Designing the discrete controller as a digital system involves a Petri net-based behavioural 
specification, taking into account the properties of the controlled objects (Figure 1). Control 
Interpreted Petri Net [6] has been shown to be a powerful tool to specify and model the 
behaviour of parallel (concurrent) controllers. The specification is given in terms of the local 
state changes. An event driven system can be abstracted as a concurrent state machine (CSM), 
in which several local  states (represented as places in Petri net) may change, when event 
occurs (transition in Petri net fires). The marking (distribution of tokens among places) of a 
Petri net can be regarded as the current global state of the modelled system. From the present 



global internal state (collection of simultaneously holding local states), the concurrent state 
machine goes to the next distributed internal global state, to generate the necessary 
combinational and registered output signals {y}. In such a way, an explicit local change of the 
marking, during the occurrence of transition, corresponds to an implicit global state change. 
The colours, which are attached to places [15], distinguish the intended sequential processes  

The synchronous Petri nets [10,12] are introduced to model binary systems, which are 
synchronised by a global clock. Input signals of controller are associated with transitions as a 
Boolean guard. The most common static Moore type output signals are linked with places. 
Some static Mealy type output signals are related both with places and input signals. A part of 
Mealy type outputs frequently coincidence with the firing of transition. That makes it possible 
to label net transitions with some particular dynamic signal names. 
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Fig. 2. Modular behavioural specification by means of Petri nets  

To obtain the economical implementation and easy maintenance, the Petri net may be directly 
mapped into the Boolean equations without explicit enumeration of all possible global states 
and all possible global state changes. Since the specification is given only in terms of the local 
state changes (local transitions), the structured local state assignment (place encoding) is used 
[1,16]. 

Petri nets provide a unified method for the design of discrete-event systems from a 
hierarchical system description (Figure 2) to possibly hierarchical physical realizations. The 
hierarchically structured Petri net consists of subnets, which, except possibly the Base Net are 
well-formed blocks. The concurrency relation between subnets is depicted by means of 
colours, which are attached to the explicitly to the places, and implicitly to the transitions and 



arcs as well as to the tokens [15]. The set of subnets is partially ordered. The coloured 
hierarchy relation tree (Figure 3) graphically represents the hierarchy and concurrency 
relations among subnets. The Base Net MP0 is on the root of the tree. It contains the double-
macroplaces MP1-MP7, which stand for the hierarchically structured subnets at the lower 
level of hierarchy. Each double macroplace (called shortly double) corresponds to a 
compound operation, which is itself a discrete sub-process described by the doubled block. 
The colours [1] and [2] are used for distinguishing some particular intended sequential 
processes, and continuously controlling the place invariants (P-subnets) and hierarchy tree 
during the composition or reduction of the net. The Petri net (Figure 3) is hierarchically 
encoded by means of state variables Qi, i= 1,2,3,4. The symbols Qi or /Qi, attached to the 
particular path, which is directed from the root to the leave, form the unique encoding term 
for the considered macroplace or place.  
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Fig. 3. Hierarchy tree 

4. GENTZEN SEQUENT LOGIC 
Petri nets can be viewed as a formal model for logic rule-based specification (interpretation 
structure). Transition rules are usually treated as production rules ('if-then' non-procedural 
statements). The principal design language used to specify the Logic Controller behaviour in 
extended nested If-Then-Else form in our design environment is Gentzen Sequent Logic [9]. 

While formulae may be regarded as a formal representation of compound propositions, 
sequents in our approach represent asserted statements. Sequents may formally describe all 
general forms of conditional assertions (rules). The Gentzen formal system naturally 
simulates and records human-like reasoning. The synthesis, based on Gentzen calculus, is 
treated as a formal symbolic transformation of the initial set of sequents (specification) into 
another equivalent set of sequents (implementation) [1,2]. The rules of inference are directly 
based on Gentzen Logic or they are previously proven, so the implementations are correct by 
construction. 

Complex sentences are built up from propositions by application of the propositional 
connectives: not (/), and (*), or (+), if-then (->), if-and-only-if  (<->) and if-then-else (-> |). 
If F, G, and H are sentences then expression F->G|H (if F then G else H) is called 
conditional. The implication F->G (if F then G) is a special case of the conditional. We call F 



the antecedent and G the consequent of implication. In our particular application (rule-based 
description) F is usually a conjunction of simple propositions, G and H are possibly nested 
conditionals, or G and H are conjunctions of simple propositions. The most frequently used 
form of simple decision rule is an asserted implication  |- F->G, in which both F and G are 
elementary conjunctions. According to Gentzen the simple decision rule can be represented 
also as an equivalent sequent    F|- G. 

The complex conditional assertion (Complex Decision Rule) is described as a sequent: 

|- F->G | H; 
It encloses possibly nested components G and H. From the Gentzen logic point of view it is a 
shorter form of a complex sequent |-(F->G)*(/F->H).  
Each Gentzen inference figure (inference rule) applied to the sequents (transition rules) 
preserves the meaning of the specification, but changes the number of the sequents and a 
form, in which sequents are expressed. If a specification is correct, transformation by means 
of natural inference guarantees correctness by construction. 
As a simple example of formal transformation we consider the declarative assertion:  

|- (F- >G)* (/F->H); 
It can be transformed into an equivalent set of two simpler sequents (assertions) by splitting 
the right side  

|- (F- >G)* (/F->H); 
_______________________     ( Rule |- *) 
|- (F->G);  |- (/F->H); 

The final assertions (simple Decision Rules) are as follows: 

F |-G; 
/F |-H; 

5. PETRI NET SPECIFICATION IN SEQUENT LANGUAGE 
The Logic Controller is considered as an abstract reasoning system (rule based system) 
implemented in reconfigurable hardware. The mapping between inputs, outputs and local 
internal states of the system is described in a formal manner by means of logic rules 
(represented as sequents) with some temporal operators, especially with operator 'next' @ 
[1,11,14]. The correctness preserving synthesis, based on Gentzen calculus, is treated as a 
formal transformation of the initial set of compound rules  (Specification) into another set of 
compound rules (Implementation). 
As a basic form of Petri net specification in rule based format the transition-oriented 
declarative specification is presented. It describes all possible active events in concurrent 
state machine, when local states are changed, and the guard (Boolean label) associated to 
transition is true. 

T1: P1 * X0 |- @P2 *@P4;
T2: P2 * X1 |- @P3;
T3: P4 * X3 |- @P5;
T4: P3 * P5 |- @P6 * @P7;
T5: P6 * X5*X6 |- @P8;
T6: P7 * /X2*/X4 |- @P9;
T7: P8 * /X5 |- @P6;
T8: P6 *P9 * /X6 |- @P1;



The static (level) Moore type outputs depend directly on places: 
P1 |- Y0; P2 |- Y1; P4 |- Y2; P7 |- Y3 * Y4;
P8 |- Y5; P9 |- Y6;

The total discrete state space (9 global states), which could be also possibly given in 
hierarchical manner, should be always consistent with all local state changes: 

|-P1*/P2*/P3*/P4*/P5*/P6*/P7*/P8*/P9,  /P1*P2*/P3*P4*/P5*/P6*/P7*/P8*/P9,…, 
 /P1*/P2*/P3*/P4*/P5*/P6*P7*P8*/P9,   /P1*/P2*/P3*/P4*/P5*/P6*/P7*P8*P9  

The presented form of description is very closed to well-known production rules, whose are a 
principal forms of Petri net description in LOGICIAN [1], CONPAR [8,10], PARIS [12], and 
PeNCAD [3,15,].  

The dynamic (pulse or registered) output signal can be included directly to the decision rule, 
when it changes its value together with the occurrence of transition. On the other hand, all 
changes of the place making could be also explicitly included into the sequent, for example: 

T1: P1 * X0 |- @P2 @P4*/@P1*@/Y0*@Y1*@Y2;

In some cases, like implementations with D flip-flops in FPGA, the declarative, place 
oriented specification is taken into account: 

P1: P1 |- X0 -> @P2 * P4 | @P1;
P2: P2 |- X1 -> @P3 | @P2;
P3: P3 |- P5 -> @P6 | @P3;
P4: P4 |- X3 -> @P5 | @P4;
P5: P5 |- P3 -> @P7 | @P5;
P6: P6 |- P9 * /X6 -> @P1 | (X5*X6 -> @P8 | @P6);
P7: P7 |- /X2*/X4 -> @P9 | @P7;
P8: P8 |- /X5 -> @P6 | @P8;
P9: P9 |- P6*/X6->@P1 | @P9;

In this kind of specification, if the next value of the temporal variable, for example @P1, 
cannot be proved in the current marking (global state) as true, it is considered that it takes the 
value false. 
When control outputs are immediate (combinational), they may be associated with the 
appropriate places and later transformed into registered ones. It should be noted that in many 
cases registered outputs could be used not only as names of places, but also directly as codes 
of the associated places  

The sequents with transition symbols {T1, T2, … , T8}, after mapping the Petri net into VHDL 
statements according to M. Bolton’s style, give economical implementations in FPGA [8]: 

P1 * X0 |- T1
P2 * X1 |- T2
........
T1+P2*/T2 |- @P2

6. PETRI NET MODELLING AND SYNTHESIS WITH VHDL 
The direct mapping of a Petri net into Field Programmable Logic (FPL) is based on a self-
evident correspondence between a place and a clearly defined bit-subset of a state register. 
The places of the Petri net are assigned to the particular flip-flops in the Register Block. 
VHDL supports conditional-statement constructs, which can be used to describe Petri net. The 
proper local state assignment (encoding) makes it possible to map a given Interpreted Petri net 
directly into FPGA or CPLD without its transformation into an equivalent global State 
Machine. The simplest technique for Petri net place encoding is to use one-to-one mapping of 
places onto flip-flops in the style of a one-hot state assignment. In that case, a name of the 
place becomes also a name of the related flip-flop. The flip-flop is set into 1 if and only if the 



particular place holds the token. Some of the recent developments involving modelling and 
analysis such constructs in VHDL were reported, for example in [2,3,8,10,15]. 

In general, places after encoding are distinguished by conjunctions, which are formed from 
state variables from the set {Q1, Q2, ... , Qk}. The local states, which are active 
simultaneously, have non-orthogonal codes. They are represented by places holding the 
tokens concurrently and belonging to the same vertex from the implicitly or explicitly given 
reachability graph of Petri net. The local states, which belong to the different, but sometimes 
overlapping sequential processes (P-invariants, SM-components) have orthogonal codes. One 
particular method of place encoding is based on hierarchical decomposition of the net. The 
example of an efficient heuristic hierarchical local state assignment [Q1, Q2, Q3, Q4] is as 
follows: 

P1 = 0 - - - P1 = /Q1
MP7 = 1 * * * MP7= Q1
MP5 = 1 0 * * MP5= Q1*/Q2
MP6 = 1 1 * * MP6= Q1*Q2
MP1 = 1 0 * * MP1= Q1*/Q2
MP2 = 1 0 * * MP2= Q1*/Q2
MP3 = 1 1 * * MP3= Q1*Q2
MP4 = 1 1 * * MP4= Q1*Q2

P2 = 1 0 0 * P2= Q1*/Q2*/Q3
P3 = 1 0 1 * P3= Q1*/Q2*Q3
P4 = 1 0 * 0 P4= Q1*/Q2*/Q4
P5 = 1 0 * 1 P5= Q1*/Q2*Q4
P6 = 1 1 0 * P6= Q1*Q2*/Q3
P7 = 1 1 * 0 P7= Q1*Q2*/Q4
P8 = 1 1 1 * P8= Q1*Q2*Q3
P9 = 1 1 * 1 P9= Q1*Q2*Q4

The global state encoding is correct if all vertices of the reachability graph have different 
codes. The total code of the reachability graph vertex would be obtained by merging the codes 
of the simultaneously marked places. The code of the particular place or macroplace is 
represented by means of the vector composed from {0, 1, - , *}, or it is given as a related 
Boolean term. The symbols 0, 1, - ('don't care') have the usual meanings, but the symbol  * in 
vector denotes  'explicitly don't know' (0 or 1, but not 'don't care'). For practical applications 
(CAD tools) it is usually sufficient to manipulate with Boolean expressions (product terms) 
[1,2,3,15].  

7. CONCLUSIONS 
Formal logic language, which is complementary with Petri nets, is suitable in specifying 
system level designs of logic controllers, implemented in FPL. Simulating of Petri net model 
and its hardware implementation can be simplified by translating of rule-based description to 
VHDL. The simulation results, at circuit level and algorithmic level, can be compared 
immediately. To simulate the pair consisting of the controller and discrete object under 
control, the test bench must include, in addition to the Reprogrammable Controller 
description, a second VHDL program, which model the controlled subsystem behaviour. The 
next design step concentrates on the automatic synthesis of Reprogrammable logic 
Controllers from their VHDL description. The paper presents the hierarchical Petri net 
approach for synthesis, in which the modular net is mapped into the Field Programmable 
logic as structured, but a flat netlist. The hierarchy levels are conserved and related with some 
particular local state variable subsets, and clearly distinguished by the encoding vectors 
(encoding terms). A concise, understandable specification can be easily locally modified. The 



experimental Petri net to VHDL translator has been implemented on the top of standard 
VHDL design tools, like ALDEC Active-HDL. 
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1 Introduction

There has been a rapid expansion recently in computer systems making it neces-
sary to develop 
exible microprocessor units (MPUs). In general, MPU sequence con-
trollers have to control multiple executing units which work together concurrently and
synchronously while maintaining operation synchronization. The sequence controller for
the parallel/pipelined ALU has been used as an important block in MPUs for advanced
computer systems and is usually designed based on sequence ladder languages/diagrams,
state charts, decision tables or circuit diagrams. However, these methods have the follow-
ing problems [14]:
(1) A variety of designing errors and bugs are easily introduced into parallelized behav-

ior.
(2) Veri�cation of the correctness of speci�cations is diÆcult.
(3) Tracing control 
ow/software is diÆcult by anyone other than the original designers.
A descriptive model of sequence control by Petri nets has become attractive due to its
simplicity [1][2]. Petri net is a graphical model which makes understanding the control

ows easy. The mathematical nature of the Petri net can be used to obtain information
about the behavior of systems which operate in a dynamic environment. Especially when
time or safety factors make actual simulations of a system unfeasible, a study of the re-
lationships between the mathematical objects of a Petri net can reveal such conditions
as deadlocks, traps, reachability of marking states, etc. which aid in the veri�cation of
system operations. Examples of applying conventional Petri nets(PNs) and Colored Petri



nets(CPNs) to system design and analysis have been given in such areas as hardware de-
sign by Jensen [3], deadlock veri�cation of Ada programs by Murata et al [4], FA control
by Nagao et al [5][10][11][12][13], and computer system models by Miller [14].

The following problem exists when PNs and CPNs are actually applied to the work of
describing control systems. The operation of these nets (�ring conditions of transitions
and the movements of tokens) is uniquely �xed. It is necessary to use many transition
and place elements to represent the branching of conditions in a process and as a result,
the net scale increases. In this paper, we describe the automatic HDL generation for a
parallel pipelined DES enciphering circuit based on an extended Petri net. For this, the
authors proposed an extended Petri net called a\Logical Coloured Petri Net (LCPN)",
suitable for the design of complex control systems processes and discuss its methods of
evaluation in [6][7][13].

2 Logical Coloured Petri Net - (LCPN)

In this section, we describe the de�nition of a logical coloured Petri net (LCPN) which
can be used to improve the description capabilities of conventional Petri nets and colored
Petri nets. Speci�cally tokens in LCPN have data (colours) and �ring conditions are given
by an arbitrary logical expression which is written in terms of the presence of tokens in
input places and the data values of tokens. This feature greatly simpli�es the work of
expressing diverging conditions in a system. Once an LCPN model is developed, it can
be analyzed by using reachability trees and simulations [8][9].

De�nition 1 LCPN : A logical coloured Petri net is a tuple of sets NE = (SE; TE; FE;ME)
which ful�lls each of the following conditions.

(1) Let SE = fs1; s2; � � � ; sng and TE = ft1; t2; � � � ; tmg be the sets of the place and
transition elements, respectively. Let FE = ff1; f2; � � � ; flg � (SE�TE)[ (TE �SE)
being a set of arcs from places to transitions and transitions to places.

(2) The mark of each place si 2 SE (i = 1; 2; � � � ; n; n =j SE j) can take the value of
a natural number from 0 to N . This is denoted by �(si). We assume �(si) = 0 if
there is no(empty) marking on si. Here, we de�ne the function � as � : SE �!
f0; 1; 2; � � � ; Ng

(3) The capacity (maximum number of marks) of each place si is 1. The set of all possi-
ble marks from (1) and (2) is represented as a mapping from SE to f0; 1; 2; � � � ; Ng.
Thus, we de�ne the cartesian product set ME as ME = f0; 1; 2; � � � ; NgSE

(4) �tj represents the set of all places (input places) which have an arc extending to
tj 2 TE (j = 1; 2; � � � ; m;m =j TE j). Similarly, tj

� represents the set of all places
(output places) with an arc extending from tj.

�tj = fs 2 SE : (9f)(f 2 FE; f = (s; tj))g
tj
� = fs 2 SE : (9f)(f 2 FE; f = (tj; s))g

(5) The �ring evaluation of a transition tj for an arbitrary marking � 2 ME examines
the �ring condition �j. �j(� j� tj) is described by a logical expression in terms of
the state � j� tj of the places which belong to �tj and is used to determine the next

marking �
0

2ME.

tj is called �rable if �j is evaluated to be true. It tj is �red, a mark is removed from
each place in �tj�tj

�. Places in tj
� depend on the state of �tj and are modi�ed by

the following Cj.



Cj : f0; 1; 2; � � � ; Ng
�tj �! f0; 1; 2; � � � ; Ngtj

�

if �j(� j� tj) is true then

�
0

=

8
><
>:

0 : on �tj � tj
�

Cj(� j� tj) : on tj
�

� : otherwise

On the other hand, tj is not �rable if �j is false. At this time, the state �
0

= � is
unchanged.

We can show the next marking resulting from a transition evaluation as a mapping
f j from state � 2ME of the places to �

0

2ME.

3 Modelling of Parallel Accumulators by LCPNs

3.1 Outline of FPGA development environment

In this section, we describe the design and analysis for the parallel accumulator with
a Petri net tool made for trial purposes. Fig. 1 shows the data 
ow of the FPGA devel-

Figure 1: The FPGA development environment.

opment environment. This development environment is composed of the LCPN Design
System Tool (see Fig. 2)[10], LCPN to HDL Converter, Verilog-HDL Logic Simulator,
and Actel FPGA Development Tool.

Figure 2: LCPN Design System Tool

At this stage, the tools examine the design's defects (validity of operations, presence
of deadlocks, synchronous relation, etc. of the pipeline operation) in the accumulator



model. By using the Petri net, we can eÆciently detect the presence of pipeline hazards
and correct them. We can also verify the stability of the synchronous relations of parallel
circuits from the net.

Next, the tools convert the net model which has been veri�ed into existing hardware
description language (Verilog-HDL). Verilog-HDL de�nes well each function module of
the circuit (comparators, full adders, etc.) as a "Class" and associates the Petri net
model from the "Class" of a sub-net and the circuit. The HDL source code �les are all
automatically generated with the HDL generator made by our group.

Finally, the HDL of the parallel operation machine generated automatically is mounted
on the gate array with an FPGA layout tool which veri�es the timing and operation speed
at the circuit level. We can decrease the labor of verifying stability with regard to such
problems as pipeline hazards, because we need only the checks of timing, operation speed,
and operation results using the delay information of real devices.

3.2 Method of Converting LCPNs to HDL

We show the method of conversion from the LCPN structural data �le (generated from
the Petri net tool) to HDL below.
STEP 1 Expand sub-nets de�ned by the user
STEP 2 Replace sub-nets with simpler sub-nets (adder, multiplier modules, etc. )
STEP 3 Class generation of Verilog-HDL from sub-nets and transitions
STEP 4 Replace place elements with corresponding latches.
STEP 5 Replace arcs with wire instances.
STEP 6 Resolve information for the class template and connection wiring
STEP 7 Generate the target HDL source of Verilog-HDL

Figure 3: LCPN to HDL Converter

The LCPN to HDL converter performs the conversion sequence [STEP 1]-[STEP 7]
from the net data �le to HDL source �le automatically. This conversion engine and the
template database for trial purposes are made with the Borland Delphi5.0 development
environment based on the Microsoft Windows95/98/NT operating system. This imple-
mentation has reduced the cost of HDL design and programming and gate array testing
on site to one third of what development would have cost using conventional procedural
language-based methods.

4 Example of Parallel DES Accumulator with LCPNs

In this work we used the LCPN to automatically generate HDL source code for a
parallel accumulator in an actual DES enciphering circuit. The circuit was embedded into



a network �le system (NFS) server in order to evaluate its e�fctiveness. We codesigned
the NFS with LCPN in [15].

The NFS described in RFC-1813, allows a local �le system to mount a �le system
through a network. The NFS server and client distinguish �les in a server by a unique
�le handle that is an integer number in 64 bits containing information of the �le (name,
i-node, update time, etc.)

The Data Encryption Standard(DES) cryptogram is an encoding algorithm announced
in 1975. The DES cryptogram encodes a plain sentence in 64 bits by a key in 56 bits.
Fig. 4 shows the one step operation in the DES cryptogram.In function f , the sentence
is replaced by eight arrays (S box). The DES cryptogram respectively carries out its
operations 16 times.

Figure 4:One step of

DES cryptogram
Figure 5:LCPN Example of Parallel DES Accumulator(subnet)

Next, the processing for execlusive OR is redesigned as a pipeline structure of 16
stages. Fig. 5 shows an example of a parallel DES accumulator with designed LCPNs
based on this sequence. Here, we put the data divided into 64 bits in place P1. Then,
it is transposed by IP and then divided into L0 and R0. After the operation with the
key schedule K1 and the extension transposition E, etc. is executed, the exclusive OR
of R0 and L0 is taken and the output is placed in R1. In the �rst step, L1 takes the
value of R0 as it is. We are attempting pipelining of 16 stages by carrying out exclusive
processing controlled by place Prn(n = 1; 2; � � � ; 16). While the �le contents are being
encoded, information on the �le is handled in a di�erent route.

In this pass, data is coded according to the character exchange style cryptogram. In
this way, it is possible to keep shared �le system information concealed while recording
coded data.

To read back the encoded data, we repeat the f and exclusive OR operations 16
times, using the key schedule in reverse order. The net for one 16 stage DES pipeline for
encryption �le system code/decoding required 832 places, 400 transitions, and 1426 arcs.

5 Conclusion

We proposed and de�ned the concept of a logical coloured Petri net (LCPN) which
improves the description capability of current PNs and CPNs. We modelled hardware for
parallel pipelined DES accumulators for a network �le server system by using LCPNs and
analyzed the net model with a Peti net development tool environment. We implemented
the accumulator hardware generated automatically from a net whose stability was veri�ed
and con�rmed its operation on the simulator of the system.

In the future, we plan to study further the operation of LCPN and improve it as we
apply it to CASE tools for developing system control software.
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1. INTRODUCTION 
Hierarchical interpreted Petri nets are a structural method of describing concurrent processes 
[6]. They enable to design more complex systems through abstracting some parts of the net, at 
the moment. It is possible when the abstract part of net is formally correct i.e. it is safe, living 
and persistent [4]. 

One of possibilities of representing digital circuit state space is hierarchical reachability graph 
[5]. It describes the state space at various hierarchy levels. Hierarchical reachability graph can 
be represented in the form of a logic function, where the logic variables correspond to places 
of Petri net. The number of variables equals to the number of places. However the efficient 
ways of representing logic functions are decision diagrams, e.g. Binary Decision Diagrams 
(BDD) or Zero-suppressed Binary Decision Diagrams (ZBDD). 

In this paper, the calculation’s method of hierarchical state space with the help of operations 
on logic functions and decision diagrams is presented. The symbolic traversal method of 
space state, for “flat” Petri nets, was presented in [1], and the application of this method for 



hierarchical Petri nets as well as the description’s method of hierarchical reachability graph 
with the form of system of connected decision diagrams are the new ideas. 

2. HIERARCHICAL PETRI NETS 
A hierarchical Petri net is a directed graph, which has three types of nodes called: places 
(represented by circles), transitions (represented by bars or boxes) and macroplaces 
(represented by double circles). The macroplaces include another places, transitions and also 
macroplaces and they signify lower levels of hierarchy (fig. 1). When a hierarchical Petri net 
is used to model a parallel controller, each place and macroplace represents a local state of the 
digital circuit. Every marked place or macroplace represents an active local state, and the set 
of places, which are marked at the same time, represents the global state of the controller. 
However the transitions describe the events, which occur in the controller. The controller also 
can receive signals (inputs) coming from a data path as well as from another control unit. It 
produces, using this information, control signals, which determine the behavior of the system. 
Input signals can be assigned to transitions in the form of logic function. This function is 
called a transition predicate. If the predicate is satisfying and all input places of the transition 
have markers, the transition will fire. 

The figure below presents the example of hierarchical Petri net, which consists of some levels 
of hierarchy. 
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Fig. 1. The example of hierarchical Petri Net 



The top hierarchy level is composed of macroplaces 1M  and 4,3,2M . The state space of it can 

be described in the form of the logic function: ( ) 4,3,214,3,214,3,21 , MMMMMM +=χ . 

The lower level of abstraction is composed of three parallel macroplaces 2M , 3M  and 4M  
which are parts of macroplace 4,3,2M . However the macroplaces 1M , 2M , 3M  and 4M  form 
the lowest level of hierarchy. Similarly to the top level of hierarchy, every remaining 
abstraction level can be described with the help of logic function. 

First thing which the designer has to do (after the controller was modeled with the help of 
Petri net) is to create graphical or textual description of Petri net. With this end in view he can 
use, for example the textual format of hierarchical Petri net specification (PNSF2) [6]. Next, 
the computer program loads this specification to internal data structures. The hierarchical or 
“flat” Petri net is stored in object data structures (fig. 2). 
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Fig. 2. The object data structure for representing of hierarchical Petri nets in computer memory 

In the next step we can calculate the state space of digital controller using internal data 
structure and the logic operations which are performing using decision diagrams. 

3. THE STATE SPACE AND BINARY DECISION DIAGRAM 
A binary decision diagram is a rooted, directed, acyclic graph, which has two sink nodes 
labeled 0 and 1, representing Boolean function 0 and 1, and non-sink nodes, each labeled with 
a Boolean variable. Each non-sink node has two output edges labelled 0 and 1 and represents 
the Boolean function corresponding to its 0 edge or the Boolean function corresponding to its 
1 edge. The construction of a BDD for the function is based on its Shannon expansion [2, 3]. 

An ordered binary decision diagram (OBDD) is a BDD in which all the variables are ordered 
and every path from the root node to a sink node visits the variables in the same order. A 
reduced ordered binary decision diagram (ROBDD) is an OBDD in which each node 
represents a distinct logic function. The size of a ROBDD strictly depends on variable 
ordering. Many heuristics have been developed to optimize the size of BDDs [2, 3]. In this 
paper all consideration binary decision diagrams are reduced and ordered. 



The whole state space of the presented hierarchical Petri net (fig. 1) can be described as logic 
function: 
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This means, that modeled controller may be in one of the twenty-nine states. The BBD 
diagram, for this function, has 24 non-sink nodes. We can reduce the number of nodes by 
creating connected system of binary decision diagrams. In this case, we are giving the six 
decision diagrams, which have nineteen non-sink nodes. This situation follows from that the 
size of decision diagram depends, among other things, on the number of logic variables of the 
function. 

4. CALCULATION ALGORITHM OF STATE SPACE 
In this chapter there is the description of state space calculation algorithm (fig 3). After 
parsing a description of Petri net, written in PNSF2 format and loading Petri net to internal 
data structures, the algorithm checks a structure of Petri net. If it is a “flat” Petri net, the 
algorithm splits it into hierarchical structure of macroplaces. In the next step, for each 
macroplace, the algorithm (recursively) calculates characteristic functions. This function, 
represented in the form of decision diagram, describes state space of each macroplace. 
However the calculated decision diagram is joined to the connected system of decision 
diagrams, which represent the whole state space of hierarchical Petri net. 

One of more important steps of this algorithm is calculating characteristic function, describing 
the state space of the macroplace (fig 4). The symbolic traversal algorithm was gathered from 
[1]. In this method, next marking is calculated using their characteristic function and 
transition function. The transition functions ( Ω→Ω∆ : ) are logic functions associated with 
places and defined as a functional vector of Boolean functions: 

( ) ( ) ( )[ ]XPXPXP n ,,...,,,, 21 δδδ=∆ , 

where ( )XPi ,δ  is a transition function of place ip ; P  and X  are sets of places and input 
signals respectively. The function iδ  has value 1 when place ip  will have a token in the next 
iteration, otherwise it equals 0. Every function iδ  consists of two parts: 

• a part describing the situation when the place ip  will receive a token, 
• a part describing the situation when the place will keep a token. 

For example: place 7p  (fig. 1) will have a token in the next iteration, if place 6p  have token 
and input signal 2S  is active (transition 6t  will fire) or place 7p  has already got a token and 



either input signal 2K  is inactivate (transition 7t  is disabled), thus the function 7δ  can be 
defined as follows: 

27267 KpSp ∗+∗=δ . 
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Fig. 3. Calculation algorithm of state space of hierarchical Petri net 

The computation operation of a set of marking which can be reached from the current 
marking (current_marking) in one iteration according to the following equations: 

[∏
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′∗∃∃=
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where xpp ,, ′  denote the present state, the next state and the input signal; 
p
∃  and 

x
∃  represent 

existential quantification of the present state and the input signal variables; symbol � and * 
represents logic operators XNOR and AND respectively. 
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Fig. 4. Symbolic traversal algorithm for hierarchical Petri net 

5. SUBMISSION 
The application of connected system binary decision diagrams enables to reduce the number 
of nodes of decision diagrams. From the opposite the application hierarchical Petri nets makes 
easier designing parallel digital controller easier. It means, that we can process digital circuits, 
described by hierarchical Petri nets, on various abstraction’s levels unnecessarily processing 
the whole state space. The next step will be working out the rules and the algorithm of 
transforming a flat Petri net into a hierarchical one. 

The paper was prepared under the guidance of Professor M. Adamski. 
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1. INTRODUCTION 
There exist a lot of ways for formal specification of digital control systems. The most of all 
(at present) are various modifications of Finite State Machine (e.g. CFSM, HCFSM), flow 
graphs (e.g. DFG, CDFG), hardware description languages (e.g. VHDL, Verilog) and Petri 
nets [7]. The latter have a special importance in designing process for the sake of rich formal 
verification apparatus and naturalness of concurrency aiding [5]. 
In designing process of control system very often a situation occurs in which specific after-
effects of processes are strongly dependent on time. There is a simple example showing this 
problem on a simplified control system of initial washing in automatic washer (Fig.1). 
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Fig. 1.An example of automatic washer control system 

After turning on washing program valve V1 is opened and water is infused. Infusing process 
lasts to moment achieving of L1 level. In the same time after exceeding L2 level (total sinking 
of heater H) if the temperature is below required (TL1) heater system is turned on. After valve 



V1 closing and water heating to temperature TL2 washing process is started in which the 
washing cylinder is turned alternate left and right for 10 sec. with 5 sec. break between. 
Keeping of temperature process is active for whole the washing cycle. The cycle is turned off 
after 280 sec. and cylinder is stopped, the heater is turned-off and the valve V2 is opened for 
water removing. 
So, this problem is possible to describe by a hardware description language using wait and 
after instructions. But synthesis of them can give a lot of problems because these language 
constructions are not supported by synthesis tools. The other formal specification models 
(except Petri nets) don’t allow a timing dependence in general. 
In this article a new model of interpreted timed Petri nets for software applications is 
proposed, with its synthesis method. The method allows easy and cheap a practical 
implementation for shown dynamic system. 

2. VIRTUAL DECISION SYSTEM 
Program implementation of Petri net is possible in various ways. One is defining an abstract 
program environment making possible efficient implementation of control systems. 
The proposed program environment is defined in terms of net places, names of input/output 
signals and program decision system called the Virtual Decision System VDS (Fig.2). 
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Fig. 2. Virtual Decision System 

Where S – is a block storing information about system state, C – is a specification block, I – is 
a block storing the names of active input signals: I = {x∈X : x = 1}, O – is a block storing the 
names of active output signals: O = {y∈Y : y = 1}. It was broadly described in [8]. 

3. PROGRAM INTERPRETED PETRI NET 
In [4] were introduced definitions describing program Petri net with most important kind of 
its: interpreted net, net with enabling and prohibit arcs. There is given a definition of program 
interpreted Petri net as a basis for further theoretical studies. 
Program interpreted Petri net is a 5-tuple: 

IPPN = (P, C, S0, X, Y) (1) 

where: P is a non-empty set of names of net places, S0 – is an initial net state, X is an input 
alphabet, Y is an output alphabet and C – is a specification structure composed of tables C1 
and C2, such that: C1 has n×3 size (n describes a number of decision rules) and C1

i1 i C1
i2 

fields include sets of names of net places, which are correspondingly the conditions and the 
results of decision rule, C1

i3 field includes conditions in logical formulas form b(X) described 
on input alphabet; C2 has m×1 size (m = ||P||) and each of fields includes set of names of 
output signals assigned to given place. 
The conditions of rule i enabling: 

∀p∈C1
i1 : p∈S (2-a) 

b∈C1
i3 ⇒ b(X)=1 (2-b) 



The actions associated with rule i firing: 
∀p∈C1

i1 : S = S - p (3-a) 
∀p∈C1

i2 : S = S + p (3-b) 
∀(p∈C1

i1)∀(y∈C2
p) : O = O - y (3-c) 

∀(p∈C1
i2)∀(y∈C2

p) : O = O + y (3-d) 

That means that from block S the names of places belonging to C1
i1 are removed and 

belonging to C1
i2 are inserted. As well as from block O the names of output signals included 

in C2 table’s fields corresponding with places belonging to C1
i1 are removed and the names of 

output signals included in C2 table’s fields corresponding with places belonging to C1
i2 are 

inserted. 

4. TIMED PETRI NETS 
Timed Petri nets were introduced earlier in literature [1,6]. And yet the subject matter wasn’t 
developed for the sake of implementation difficulties mainly. A new program model of timed 
Petri net is proposed in this paper, that allows an efficient implementation in microprocessor 
modules. 
A general program model of interpreted timed Petri net is shown as an ordered 6-tuple: 

TIPPN = (P, C, S0, X, Y, T) (4) 

where: P, S0, X, Y are defined just like (1), C is a specification block defined according to a 
kind of described net, and T is discrete scale of time. The differences will be stressed also in 
conditions of rules enabling and actions connected with their firing. 
There is modified block S, keeping information about system state. For timed nets it can be a 
structure composed of following elements: 
S1 = {p: p∈P} – includes names of places currently marked, being outside a keeping state, 
S1

2 = {p: p∈P} – includes names of places currently marked, being inside a keeping state, 
S2

2 = {t: t∈T} – includes numbers assigned to discrete scale of time and describing state of 
timing actions in accordance with the places in S1

2, 
S1

3 = {p: p∈P} – includes names of places prepared for marking after closing adequate timing 
actions assigned to given rules firing, 
S2

3 = {t: t∈T} – includes numbers assigned to discrete scale of time and describing state of 
timing actions in accordance with the places in S1

3. 

4.1. Program timed net of P-type 
The time parameters are assigned to places in the nets of P-type and they are called keeping 
times. The keeping times can be perceived as times of staying marker in place p what is 
shown in Fig.3-a) (along with practical interpretation). 
The condition of transition T2 enabling is a time (2 sec.) passing since moment of introducing 
marker into place P1. In practice this situation is interpreted as starting external timing action 
by signal c1. The end of action is indicated by set signal c2 conditioning transition T2. 
A theoretical model is consistent with (4). Specification block C has differences to (1): 
table C2 has m×2 size, into C2

1(p) are included names of output signals assigned to place p, 
and into C2

2(p) are included numbers assigned to discrete scale of time T, describing the 
keeping time of marker in place p. 
The condition of rule i enabling (just like 2-b) and: 

∀p∈Ci1
1 : p∈S1 (5) 

The actions associated with rule i firing: 



∀p∈C1
i1 : S1 = S1 - p (6-a) 

∀p∈C1
i2 : C2

2(p) = 0 ⇒ S1 = S1 + p (6-b) 
∀p∈C1

i2 : C2
2(p) ≠ 0 ⇒ S1

2 = S1
2 + p i S2

2 = S2
2 + C2

2(p) (6-c) 

That means that from block S1 the names of places belonging to C1
i1 are removed and 

belonging to C1
i2 are inserted to S1 if their keeping time equals zero (C2

2(p) = 0), or to S1
2 if 

not. Simultaneously a variable of timing action is added to S2
2 (with initialization by C2

2(p) 
value). 
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Fig. 3.An example of a) P-type net, b) T-type net 

4.2. Program timed net of T-type 
The time parameters are assigned to transitions in the nets of T-type and they are called 
execution times. The execution times can be perceived as times since moment of removing 
markers from input places to moment of inserting marker to output places given transition t. 
The situation can be interpreted with ideas P-type net introduced in 4.1. During transition T1 
execution (Fig.3-b)) marker is moved to auxiliary place Pt. End of this execution (equivalent 
to keeping time of place Pt) allows auxiliary transition Tt execution. In consequence the 
marker is moved to output place P2.  
A theoretical model is consistent with (4). Specification block C has differences to (1): 
table C1 has n×4 size, fields C1

i1, C1
i2, and C1

i3 just like (1), and into C1
i4 are included 

numbers assigned to discrete scale of time T, describing execution time of transition t. 
The condition of rule i enabling just like (5). The actions associated with rule i firing just like 
(6-a) and: 

C1
i4 = 0 ⇒ ∀p∈C1

i2 : S1 = S1 + p (7-a) 
C1

i4 ≠ 0 ⇒ ∀p∈C1
i2 : S1

3 = S1
3 + p i S2

3 = S2
3 + C1

i4 (7-b) 

That means that from block S1 the names of places belonging to C1
i1 are removed and 

belonging to C1
i2 are inserted to S1 if execution time of rule equals zero (C1

i4 = 0), or to S1
3 if 

not. Simultaneously a variable of timing action is added to S2
3 (with initialization by C1

i4 
value). 

4.3. Program timed net of PT-type 
Timed Petri net PT-type is a superposition of nets defined in 4.1 and 4.2. There are the time 
parameters assigned with both places and transitions. A theoretical model is consistent with 
(4). Specification block C is composed of two tables: C1 (just like in 4.2) and C2 (just like in 
4.1). 
The condition of rule i enabling just like (5). The actions associated with rule i firing just like 
(6-a) and: 

C1
i4 ≠ 0 ⇒ ∀p∈C1

i2 : S1
2 = S1

2 + p i S2
2 = S2

2 + C1
i4 (8-a) 



C1
i4 = 0 ⇒ ∀p∈C1

i2 : C2
2(p) = 0 ⇒ S1 = S1 + p (8-b) 

C1
i4 = 0 ⇒ ∀p∈C1

i2 : C2
2(p) ≠ 0 ⇒ S1

3 = S1
3 + p i S2

3 = S2
3 + C2

2(p) (8-c) 

That means that from block S1 the names of places belonging to C1
i1 are removed and 

belonging to C1
i2 are inserted to S1 if execution time of rule equals zero (C1

i4 = 0) and keeping 
time equals zero (C2

2(p) = 0), or to S1
2 if execution time of rule doesn’t equal zero (C1

i4 ≠ 0), 
or to S1

3 if execution time of rule equals zero (C1
i4 = 0) and keeping time doesn’t equal zero 

(C2
2(p) ≠ 0). The variables of timing action are adding to S2

2 and S2
3 simultaneously with (8-

a) and (8-c). 

5. RESULTS AND APPLICATION 
So the defined environment and program implementation model of interpreted Petri net 
enables simple implementation with any high level language. Specification of blocks C and S 
can be declared as structures composed by required number of tables; blocks I and O – as 
global variables. Decision block can be declared as a system of functions operating on 
mentioned blocks. It was broadly depicted in [2,4]. 
This paper presents only methodology of initializing and performing of timing actions in 
simple systems with industrial standard microcontrollers. 
The idea of executing timing actions relies on using interrupt system in microprocessor 
module. In general it must generate an interrupt with given constant frequency (e.g. 1 kHz). It 
is possible to realize by using a generator connected to external interrupt pin or by using an 
internal timer/counter (more recommended). The overflow that timer is indicated by calling 
right interrupt. The interrupt handling procedure is used to decrement of auxiliary registers 
storing information about actual state of timing actions. 
At the initialization moment of timing action there is granted suitable variable with initial 
value tp = ta*fi , where ta is a required time of action, fi is a frequency of calling interrupt int. 
The value of tp is taken from right fields of specification block C (C1

i4 and C2
2(p)). 

During interrupt handling procedure microprocessor performs decrement operations all 
variables of timing actions. If any variable equals zero then it is taken operation assigned to 
its ending and in next step it is removed from variables list: 

∀(p∈S1
2) S2

2 = 0 ⇒ S1
2 = S1

2 – p and S2
2 = S2

2 – S2
2(p) and S1 = S1 + p (9-a) 

∀(p∈S1
3) S2

3 = 0 ⇒ S1
3 = S1

3 – p and S2
3 = S2

3 – S2
3(p) and S1 = S1 + p (9-b) 

Contents of block O is updated according to contents of blocks S1 oraz S1
2: 

∀[p∉(S1∪ S1
2)] ∀[y∈C2

1(p)] O = O – y (10-a) 
∀[p∈(S1∪ S1

2)] ∀[y∈C2
1(p)] O = O + y (10-b) 

A precision of timing action is dependent on a lot of factors in proposed system. The most 
important are: inaccuracy of generating interrupt system, delay of calling interrupt procedure, 
time of interrupt handling, number of active timing actions, time of updating state block S, 
reaction time of decision block and time of function I/O handling. 
Suppose sufficient precision generating interrupt system there we can omit the deviation 
assigned to it. The other factors are strongly dependent among other things on used processor, 
its clock speed and quality of executable program code generated by given compiler. 
In general the deviation of timing action is linear to number of decision rules and it’s 
contained in given range. The range is possible to calculating in analysis process. A specific 
value of this deviation (in the range of course) for given rules or places is dependent on 
location the rules in specification block C. This is a result of sequential examining block C by 
decision block in permitted rules searching. 
A net modeling that system and an obtained results are presented in Fig.4. 
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Fig. 4. Fragment of the net modelling washer controller with the results 

As a test system was adopted single-chip microcontroller PCF 80C51HB-3 with 12MHz 
clock. Program was compiled with µVision 2 tool (Keil Software). 

6. SUMMARY 
Application of the timed model Petri nets not only can effectively help on description level 
for reactive system strongly time depended but it can be used in system decomposition 
automation too (in Hardware/Software Co-Design sense [3]). 
Further works and researches are to steer on studying generalized model for complicated 
hierarchical nets. We are going to consider not only simplifications of implementation for nets 
with complicated topology but also implementation of nets in distracted systems. 
 
This work was supported by KBN grant: 7  T11C  010  20. 
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Abstract. A problem of program implementation of parallel algorithms of logical control 
is considered. Parallel algorithms are represented in PRALU as a set of linear algorithms 
that can be executed under the control of mechanism of Petri net type. The goal is to build 
the compiler from language PRALU.  This compiler can be used as working tool to build 
programmable logic controller (PLC) or supervisory control application or Forth 
application. 
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1. INTRODUCTION  
Although developed primary for logic control, PRALU [10] can be used to structure any 
application that involves sequences of operations and controlled flow of execution, and where 
it is important to be able to represent communication between the parts of system. This 
language has textual and graphical forms. The advantage of the graphical form is the 
simplicity and declarativeness. The textual form is used as formal tool or as intermediate 
representation.   

A programmable logic controller (PLC) is digitally operating electronic system designed for 
the use in an industrial environment. It was originally developed to replace electro-magnetic 
relay circuits or solid-state logic blocks [7]. Relay Ladder Logic (RLL), the most common 
graphical language for PLC is symbolic representation of relay circuits. The core of PLC 
software is a program, which interprets RLL diagrams. This program continually scan RLL 
diagram. The time elapsed during a scan (proportional to the length of RLL) determines 
response time of the PLC. PLC with language PRALU have less response time. 

Supervisory control applications such as set-point control, monitoring, fault detection and 
production optimisation are mainly operator support systems. There is a large industrial 
interest in applying AI (Artificial Intelligence) techniques to this type of the application [10]. 
These applications typically use the object-oriented knowledge base with the rule-based 
programming. A large problem with the rule-based system is their lack of structure. Language 
PRALU can be used to structure the set of rules in these applications. 

Programming language Forth [8] was originally developed for small embedded control mini- 
and micro-computers. It has been used in a wide variety of applications, but his main area is 



distributed real time control systems. Using PRALU as programming language of Forth 
systems extends their fighting chance by the logic control. 

The common feature for all above-mentioned applications is the generic lack of capacity of 
previously used languages. Using PRALU in this case offers the capability to improve 
execution speed and maintenance of the application.  

In this work the set of operations (Intermediate Language) is proposed, which is concise to 
represent any PRALU algorithm as a program for a single processor computer. To prove the 
sufficiency of the chosen set, all PRALU constructions are considered, and equal sequences of 
operations of intermediate language are shown. The implementation of this intermediate 
language is inexpensive. Any operation in this set can be implemented as a short sequence 
(average length is equal to 3 for Intel 86 family) of modern microprocessor commands. As a 
result the quality of target program is achieved. 

The proposed method of program implementation of parallel algorithms of logical control can 
be used for deriving a program from any specification that can be mapped into the state based 
representation with arcs labeled with a symbol of events. In [5] a technique for converting 
behavior description into Petri net is described. Thereafter, as the graphical form of PRALU 
algorithm is the interpreted Petri net, it is possible to implement programmatically any state 
based representation. 

To design and debug of PRALU algorithms there are programming environments on the most 
commonly used platforms – IBM PC, MS Windows [12] and MS DOS [2].  In [4] ActiveX 
component is described that can be used as control engine of supervisory control applications. 
This component constitutes its own interface through which the execution of PRALU 
algorithms can be animated. 

2. MINIMAL SEMANTICS OF PRALU 
In [10] for describing the rules of executions of PRALU algorithms the notion of parallel 
automaton is used. But this semantics of PRALU is oriented to hardware implementation. 
Many tasks (for example, optimal state encoding) are insignificant in program 
implementation. Parallel systems software design requires attention to detail beyond that 
normally required for hardware systems.  

The process of implementation of PRALU can be viewed as the replacement of the PRALU 
semantics by another, more detail one. A language can have several semantics that distinguish 
of detail level. The minimal semantics is a formal system that states fundamental properties 
only, and other correct semantics must include these properties. The minimal semantics puts a 
problem of the validity of an implementation on the firm ground of the formalism. 

In the minimal semantics a PRALU algorithm (see example 5.1) is viewed as formulae of 
logic calculus. This logic calculus combines the linear time temporal logic and the branching 
time temporal logic. The objects of this calculus are a time interval, operation and a time 
point, event. The operation can be active, executing or passive, stopping. The states of 
operation are given in a schedule of the process of execution of the PRALU algorithm. The 
time is the notion of the minimal semantics and must be understood as in temporal logic. 

In the minimal semantics of PRALU following presumptions are supposed to be valid. 
1. The operations are connected (there is no time gap between adjacent operations). 
2. The execution sequence of operations is deterministic (the next time point is unique). 
3. The execution of operation depends on the same set of operations (symmetry of time 

point). 



4. The event can be either the result of operation or the reason of firing of operation. 

If event is the reason of firing operation then this operation is called “wait” and is denoted as 
“-”. If event is a result of operation it is called “action” (is denoted as “->”). The operations of 
PRALU are orthogonal by the causal relation between events and operations. The formal 
description of minimal PRALU semantics is in [3].  

The causal relation (partial order) between the operations is determined from control structure 
of PRALU algorithms (fig. 1). The structure of PRALU algorithms directly identifies the 
causal relations between operations. The full behavior includes the causal relation between 
events. Consequently the behavior of algorithms depends on an interaction of operation by 
events (information exchange). In minimal PRALU semantics the model of information 
exchange is the same as in CCS [6]. As a result PRALU is not implementable in minimal 
semantics.  

 
Fig. 1. Representation of PRALU algorithm as Petri net 

The minimal semantics is primary a specification and it is useful because it lets us formally 
specify many different implementations of behaviour. Known methods of the PRALU 
algorithms validation [10] are true in minimal semantics, and consequently they are true in 
any correct elaboration of minimal semantics.  

3. ELABORATIONS OF MINIMAL SEMANTICS 
To be implemented semantics must predict the behaviour of PRALU algorithms 
unambiguously. The elaborated semantics must determine one-valued relation between the 
plan of operation execution and the causal structure of events. The information about the 
allowed orders and the times of events are captured in elaborated semantics. 

Let us suppose that the wait operation starts at the same time point as event occurs that is the 
reason of firing this operation, and the action operation ends at the same time point as the 
event occurs that is the result of this operation (as it takes place in hardware implementation). 
In this case the relation between the plan of operation execution and the causal structure of 
events is determined by supposition about the duration of action in PRALU algorithms.  

The hardware implementation of a PRALU algorithm has fully-specified behavior. The times 
of all operations are determined by the structure of a circuit. In formal terms the duration of 
all action operations is constant for every operation (it is not changed during execution of 
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algorithm). The hardware implementation has their communication scheduled statically in 
design time. 

In CCS [6] the message exchange is determined with the concurrency relation. This relation 
fixes the set of couples of events. Each couple determines a single exchange event. But this 
relation is not a part of CCS model. Likewise language PRALU does not have explicit means 
to use this approach. 

Other means is measured time, which is often used in concurrency determination. In PRALU 
measured time equals to the supposition about equality of times (continuance) of all action 
operations in the algorithm. The other form of this supposition is: the operation can not be 
executed in parallel to yourself. 

4. INTERMEDIATE LANGUAGE 
The converting Petri net into a program is considered in [9]. Our method produces a faster 
program. We propose the set of operations (Intermediate Language), which is concise to 
represent any PRALU algorithm as a program, and inexpensive implementation of this 
intermediate language. The proposed set of operations is the basis of algorithmic 
decomposition of the source algorithms. The wait and action operations are not unit actions 
and rather are the compositions in the proposed intermediate language. 

To implement a concurrent algorithm on a single processor we must sort the plan of operation 
execution. This procedure is called scheduler. The scheduler of PRALU intermediate 
language is an object, which has properties and methods. The scheduler properties are a wait 
queue and a prepared queue. The scheduler methods are: thread start, thread stop, and thread 
interrupt. The scheduler methods are included into PRALU intermediate language.  

Thread start operation includes into prepared queue the operation given in argument. Thread 
interrupt includes the next operation of algorithm into wait queue and takes the top operation 
from prepared queue and fires it. Thread stop stops current thread, takes the top operation 
from prepared queue and fires it. Thread stop operation has a conditional form.  

The initial state of the scheduler is: prepared queue contains the first operation of the 
algorithm and wait queue is empty. If the scheduler has an empty prepared queue, then it 
copies content of wait queue into prepared queue and empties the wait queue. The realization 
of a queue is don’t care for correct implementation of concurrency; this is the matter of the 
productivity of a program. 

Prepared queue of a Forth system [8] is a data stack and wait queue is a call stack. In 
microprocessor program prepared queue is programmatically realized and wait queue is a call 
stack of microprocessor. 

Besides this, there are operations of setting input or output buffers in PRALU intermediate 
language. To do information exchange, the output buffer is copied into the input buffer, when 
prepared queue is empty. At the same point of time the data output is executed from output 
buffer, and the external signals input into the input buffer. This guarantees that concurrently 
executing operations of the source algorithms have equal continuance. 

Current marking of Petri net is represented by control vector. Each bit in this vector 
corresponds to the net place (the label of chain in source algorithm). The initial state of this 
vector is 0 in all bits. A mask vector is used to control the execution of dependent chains. The 
initial state of this vector is 0 in all bits. The conditional form of a thread stop operation tests 
this vector. If an argument is given, then this operation stops current thread, if mask vector bit 
is equal to 0. 



Table 1.The instruction code of PRALU intermediate language. 
 

Symbol Function 
@ 
% 
A 
$ 
O 
P 
R 
M 
C 
 

Thread interrupt 
Thread start 
Thread stop 
Set of output buffer 
Test of input buffer 
Set of control vector 
Reset of control vector 
Set of mask vector 
Reset of mask vector 
 

5. CONVERTING PRALU ALGORITHM INTO A PROGRAM 
The compilation of PRALU is a substitution of PRALU operations by a sequence of 
intermediate language operations. The compiler PRALU uses the following patterns of 
substitution: 
action operation ( ->x,…,y) => $(x,..y); 
wait operation (-a,…,b) => @Aw1,..wn:O(a,…,b)Mw1,…,wn. 
goto operation  (->n,…,m) => Pw1,…wn:%n,…,%m 
The pattern of wait operation and goto operation depends on parsing of source algorithm. This 
is general form. 
 

5.1. Example. 

1: -y ->ac –‘y ->b ->2.3 
2: -x ->’a’b ->4.5 
3: -y’x ->6 
3: -yx ->c –‘x ->’c ->3 
4: -p ->a ->7 
5: -‘xp ->b ->8 
6.7.8: ->’a’b’c ->.

1: @O(y) $(a,c) @O( ‘y) $(b) %2%3 A 
2: @O(x) $(’a,’b) %4%5 A 
3: @Aw1O(y’,x)Mw1Mw2 P6 %7 A 
4: @Aw1O(y,x) Mw1 $(c) @O(‘x) $(’c) @@ Pw1 %4%3 A 
5: @O(p) $(a) Mw2P7 %7 A 
6: @O( ‘x,p) $(b) Mw2P8 %7 A 
7: @Aw2O(P6, P7,P8)Mw2 C(P6, P7,P8) $(a’b’c) A 

 

The result of compilation of algorithm on the left column is shown on the right one. 

6. CONCLUSIONS 
In this paper, we have discussed a systematic method to implement PRALU algorithm as a 
program. This method can be used for deriving a program from any specification that can be 
mapped into state based representation with arcs labeled with symbols of events. 

In real life the proposed method has been used as a tool for designing programmable logic 
controllers, supervisory control applications, and Forth logic control capability. 
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Abstract. Three algorithms for assignment of partial states of synchronous parallel 
automata are considered. Two of them are heuristic, the third one is exact, i.e. the 
number of coding variables obtained by this algorithm is minimum. It is based on 
covering a non-parallelism graph of partial states by complete bipartite subgraphs. 
One of the heuristic algorithms is based on the solving the same problem but it uses 
an approximate method for it. The other of them is known as iterative one. The 
results of application of these algorithms on some pseudo-random synchronous 
parallel automata and the method for generating such objects are given. 
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1. INTRODUCTION 
The parallel automaton is a functional model of a discrete device and is rather convenient to 
represent the parallelism of interactive branches of controlled process [17]. The main 
distinction between a parallel automaton and a sequential one (finite state machine) is that the 
latter can be in only one state at any moment while the parallel automaton can be in several 
partial states simultaneously. A set of partial states a parallel automaton can be at 
simultaneously is called a total state. Any two partial states in which an automaton can be 
simultaneously are called parallel. 

A parallel automaton is described by the set of strings of the form µi : − wi → vi → νi, where wi 
and vi are elementary conjunctions of Boolean variables that define the condition of transition 
and the output signals respectively, µi and νi are labels that represent the sets of partial states of 
the parallel automaton [17]. Every such a string should be understood as follows. If the total 
state of the parallel automaton contains all the partial states from µi and the event wi has been 
realised in the input variable space, then the automaton is found to be in the total state that 
differs from the initial one by containing partial states from νi instead of those from µi. The 
values of output variables in this case are set to be such that vi = 1. 
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If − wi and → vi are removed from the string it can be interpreted as a transition (µi, νi) in a 
Petri net. So, the set of such reduced strings can be considered as a Petri net being a “skeleton” 
of the given parallel automaton. Here we consider only those parallel automata whose skeleton 
is an α-net [17] that is a subclass of live and safe expanded nets of free choice which are 
studied in [6]. 

In state assignment of a parallel automaton, partial states are encoded by ternary vectors in the 
space of introduced internal variables that can take values 0, 1 or “−”, orthogonal vectors being 
assigned to non-parallel states and non-orthogonal vectors to parallel states [2, 15, 16]. The 
orthogonality of ternary vectors means existence of a component having opposite values (0 and 
1) in these vectors. It is natural to minimise the dimension of the space that results in the 
minimum of memory elements (flip-flops) in the circuit implementation of the automaton. 

The methods to solve the state assignment problem for synchronous parallel automata are 
surveyed in [4]. Two heuristic algorithms are considered here. One of them is based on iterative 
method [3], the other reduces the minimisation of the number of memory elements to the 
problem of covering a non-parallelism graph of partial states by complete bipartite subgraphs 
[9]. To solve the problem of covering it uses a heuristic technique. The third algorithm 
considered here is exact, i.e. the number of coding variables (memory elements) obtained by 
this algorithm is minimum. It also finds a cover of a non-parallelism graph of partial states by 
complete bipartite subgraphs but using an exact technique [11]. These three algorithms were 
used to encode partial states of a number of synchronous parallel automata obtained as pseudo-
random objects. The pseudo-random parallel automata with the given parameters were 
generated by a special computer program. The method for generating such objects is described. 
The results of this experiment allow one to decide about the quality of the algorithms. Similar 
experiments are described in [18] where another approach was investigated and the pseudo-
random objects were Boolean matrices interpreted as partial states orthogonality matrices of 
parallel automata. 

2. EXACT ALGORITHM 
Below we refer to this algorithm as Algorithm A. It is based on covering a non-parallelism 
graph G of partial states by complete bipartite subgraphs. Let the complete bipartite subgraphs 
B1, B2, ... , Bm form a shortest covering of G, and Bk for every k = 1, 2, ... , m be associated with 
a Boolean coding variable zk so that zk = 1 for the states relative to one partite set of Bk and 
zk = 0 for the states relative to the other. Then the values of coding variables z1, z2, ... , zm 
represent the solution sought for. The covering is considered here as every edge of G belongs to 
at least one Bk. 

The first step to the solution is finding all maximum complete bipartite subgraphs of G. Three 
ways to do it are given in [10, 15]. Then one must obtain the shortest covering of edge set of G 
by those complete bipartite subgraphs. For decreasing the dimension of the covering problem 
the reduction rules for initial graph are used in construction the covering matrix. These rules are 
described in [15]. Another way to decrease the dimensions of the problem is given in [11]. It 
can be applied if G can be represented as G = G1 + G2, i.e. in the form of the result of join 
operation on two graphs [7]. The decrease is achieved if one of G1 and G2, say G1, is a 
complete graph. This is typical for an automaton whose “skeleton” is α-net. Then the covering 
problem is solved only for G2. When the cover is obtained the codes of the states which are 
associated with the vertices of G2 are chosen as shown above. These codes form a Boolean 
space of coding variables. If they don’t occupy all the space, the codes of the states associated 
with the vertices of G1 are placed in the rest. The space is extended, if necessary, to the size 
enough for placing all state codes. In this case a non-redundant cover must be found rather than 



a shortest one. Algorithm A realises this method. The idea of using decomposition as the means 
to reduce the dimension of the task is rather fruitful. For example, one can see in [8] another 
case of using decomposition to decrease the dimension of the problem of our field. 

3. HEURISTIC ALGORITHMS 

3.1. Algorithm B 
The NP-hardness of covering problem [5] doesn’t allow it always to be solved in acceptable 
time. Therefore the heuristic algorithm is proposed in [9] that obtains in many cases the shortest 
cover. We call it Algorithm B. It consists of two stages. At the first stage the sequence of 
graphs G2, G3, ... , Gn = G is considered, where G is the non-parallelism graph of the given 
automaton with V = {v1, v2, ... , vn} as the set of vertices, and Gi is the subgraph of G induced 
by the set of vertices Vi = {v1, v2, ... , vi}. Having the cover of Gi the transition from it to the 
cover of Gi+1 is carried out. At the second stage the obtained cover is improved (if possible). 
This improvement consists in removing some complete bipartite subgraph from the covering 
and in the attempt of reconstruction the cover by adding edges to remained subgraphs. This 
procedure repeats for all elements of the cover. The complete bipartite subgraphs are obtained 
concurrently with constructing the cover. 

3.2. Algorithm C 
The other heuristic algorithm is based on the iterative method suggested in [3]. We refer to this 
algorithm as Algorithm C. The iterative method assumes the definition of parallelism relation 
and an initial coding matrix for partial states (the initial matrix may be empty). The matrix is 
extended in the process of coding by introducing additional coding variables that makes it 
possible to separate non-parallel partial states in certain pairs. To separate two states means to 
put opposite values (0 and 1) to some coding variable in the codes of these states. The method 
consists in iterative executions of two procedures: introducing a new coding variable and 
defining its values in codes of non-separated yet non-parallel partial states. These procedures 
are being executed until all non-parallel states have been separated. Minimising the number of 
introduced coding variables the method minimises the Hamming distance between codes of 
states related by transitions as well. The aim of this is the minimisation of the number of 
switchings of RS type flip-flops in circuit realisation of a parallel automaton. 

Introducing a new coding variable is accompanied with separating the maximal number of non-
separated yet non-parallel partial states by this variable. For this purpose at each step of the 
procedure of defining the values of the due variable, a state is chosen to encode by this 
variable. This state should be separated from the maximal number of states encoded already by 
this variable. The number of states that are not separated from the chosen one and have been 
encoded by this variable must be maximum. A new coding variable is introduced if the inner 
variables having been introduced don’t separate all non-parallel partial states from each other. 

4. GENERATING PARALLEL AUTOMATA 

Any string of the form µi : − wi → vi → νi in automaton specification we call a transition, and a 
set of transitions with the same µi a sentence. The algorithm for generating parallel automata is 
described in detail in [12] where a parallel automaton is constructed as a system of three 
pseudo-random objects. They are the skeleton of the automaton that is an α-net specified in the 
form of a sequence of pairs (µi, νi), the ternary matrix X representing conjunctions wi, and the 



ternary matrix Y representing conjunctions vi. In our task the α-net is enough, therefore we 
shouldn’t describe the way of generating X and Y here. 

The given beforehand parameters of every pseudo-random α-net generated by a special 
computer program are the number of places (partial states of the automaton) p, the number of 
transitions t, and the number of sentences s. 

Generating pseudo-random parallel automata as systems of three mentioned above objects with 
given beforehand parameters would not be difficult if no correctness demands exist without 
which there is no sense to execute algorithms intended for such automata. Proceeding from the 
correctness properties of a parallel control algorithm that are named in [16], let us consider the 
following properties of a parallel automaton, that guarantee its correctness in our case. It must 
be irredundant (there is no transition that can be never done), recoverable (it can return to the 
initial total state from any other one), and self-coordinated (any transition cannot be started 
before it ceases). 

Irredundancy, recoverability, and self-co-ordination of a parallel automaton corresponds to 
liveness and safety of the related α-net [16]. The characteristic properties of α-net are the initial 
marking of it consisting of one element, {1}, and the sets of input places of two different 
transitions coinciding or disjoining. In the Petri net theory the reduction methods for checking 
liveness and safety are well known [1], where the initial net is transformed according to certain 
rules with preserving these properties. The transformations reduce the dimension of a given net 
and so facilitate the checking liveness and safety of the net. 

To check liveness and safety of α-nets the application of two rules is sufficient [16]. The first 
rule consists in deleting loops i.e. the transitions where µi = νi. The second one is as follows. 
Let a set of places π not containing place 1 be such that for every transition (µi, νi), π ∩ µi ≠ ∅ 
implies π = µi and π ∩ νi = ∅, and π ∩ νi ≠ ∅ implies π ⊆ νi. Besides, there exists at least one 
transition with π ∩ νi ≠ ∅. Then all transitions (µj, νj) with π = µi are removed and every 
transition (µk, νk) with π ⊆ νk is substituted by the set of transitions that are obtained from 
(µk, νk) by replacing π by sets νj from those transitions (µj, νj) where π = µj. A live and safe α-
net is proved in [14] to be completely reducible, i.e. the application of these rules leads to the 
net that consists of the only transition (1,1). This implies the way of generating live and safe α-
nets that consists in transformations that are inverse to the above. 

5. EXPERIMENTAL RESULTS 
Algorithms A, B, and C are realised in computer programs and the corresponding modules are 
included as components into ISAPR that is a research CAD system [13]. The program for 
generating pseudo-random parallel automata is included into ISAPR as well. This program was 
used to generate several parallel automata. The results of partial state assignment are shown in 
Table 1. One of the automata whose partial states were encoded, RAZ, was not generated by 
the program mentioned above. It was obtained from a real control algorithm. 

As it was noted, only the parameters of α-net, i.e. the number of places p, the number of 
transitions t, and the number of sentences s were considered. Besides those, the number of 
maximum complete bipartite subgraphs in the graph G of non-parallelism of partial states of the 
given automaton may be of interest. Algorithm A uses the method that decomposes graph G 
into two subgraphs, G1 and G2, G1, being complete. So, the maximum complete bipartite 
subgraphs were found in G2. The calculations were performed on a computer of AT type with 
the 386 processor. 



6. CONCLUSION 
The technique of investigation of algorithms for state assignment of parallel automata is 
described in this paper. The experimental data show that Algorithms B and C are quite 
competitive to each other, although the speed of Algorithm C is higher than that of Algorithm 
B. Algorithm A is intended to be applied for automata of small dimension. It can be used as a 
standard algorithm and helps one to appreciate the quality of solutions obtained by heuristic 
algorithms.  

Table 1. Experimental results: p, t, and s are parameters of α-nets, b is the number of maximum 
complete bipartite subgraphs of G2. 

Algorithm A Algorithm B Algorithm C Name p t s b 

Code 
length

Run time Code 
length

Run time Code 
length 

Run time 

AP2 20 18 18 75 6 13 min. 28 sec. 7 6 sec. 7 3 sec. 

APR1 20 21 19 8 5 8 sec. 6 7 sec. 5 3 sec. 

APR2 20 21 19 4 5 5 sec. 6 8 sec. 5 3 sec. 

APR3 20 21 15 7 4 6 sec. 5 3 sec. 6 3 sec. 

APR6 20 28 15 43 5 2 min. 23 sec. 6 8 sec. 6 3 sec. 

APR7 20 30 15 55 5 49 sec. 6 8 sec. 6 3 sec. 

APR8 20 15 15 49 5 1 min. 28 sec. 5 5 sec. 5 3 sec. 

RAZ 20 21 19 1033 9 3 h. 46 m. 22 s. 9 8 sec. 10 4 sec. 
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Abstract. The development of embedded systems requires both tools and methods which help the designer to 
deal with the higher complexity and tougher constrains due to the different hardware support, the often 
distributed topology and time requirements. Moreover, the last steps of each version of the design, namely, 
simulation and targeting, should be made easier and faster to execute, in order to facilitate the correction of 
problems and the issue of a new more correct version, thus increasing the frequency of an iterative 
engineering process. This has a major impact on the overall costs and final product quality, and therefore 
the use of a CASE tool that supports the chosen methodology becomes an obvious advantage. We have 
applied the Object-Oriented Real-Time Techniques (OORT) method, which is oriented towards the 
specification of distributed real-time systems, to the implementation of the Multiple Lift System (MLS) case 
study. This paper describes briefly the method and presents our experience in the simulation and targeting of 
developed system, namely the difficulties we had and the success we have achieved. 

Keywords: Distributed Systems Specification, Software Engineering, Discrete-Event Systems Control, 
Simulation, Targeting. 

1. INTRODUCTION 

Real-time systems are very complex because they are often distributed, run in different 
platforms, have temporal constraints, etc. The development of these systems demand high 
quality and increasing economic constraints, therefore it is necessary to minimise their errors 
and its maintenance costs, and deliver them in short deadlines. 
To achieve these goals it is necessary to verify a few conditions: decrease the complexity of 
the systems through hierarchical and graphical modelling for high flexibility in the 
maintenance; protect the investments with the application of international standards in the 
development; to apply early verification and validation techniques to reduce the errors; and, 
reduce the delivery times by automating code generation and increasing the level of 
reusability. Finally, its necessary to have a tool that provides these conditions. The present 
work was developed with the ObjectGEODEi toolset, that supports the OORT method. 
The OORT method [14] is organised according to the diagram of figure 1 and applies the 
Unified Modelling Language (UML), Message Sequence Chart (MSC) and Specification and 
Description Language (SDL). The UML language is a de jure standard (see [5] for details) and 
it is defined in [10]. The MSC was defined [8] as complement to SDL, both international 
standards by ITU-T. [13] provides an introduction to MSC. SDL is defined by [6], [7] and [9], 
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however [11] is a more comprehensive reference, while [4] is a handy summary of the 
language. The use of both languages together is guided by [10]. 
In this work we have applied the OORT method to the modelling of a case study – the 
Multiple Lift System (MLS). A description of a MLS architecture using UML is presented in 
[2]. The analysis model uses UML to model the system’s environment, and MSC to specify 
the behaviour of the system. The system’s architecture is defined in SDL. The detailed design 
uses SDL for the concurrent objects specification and UML for the passive components 
description. The MSC language supports the test design activity. For the simulation of the 
designed system we used the ObjectGEODE simulator, and finally we use the C Code 
Generator for the targeting. Each of this steps in the systems engineering process is described 
in the following sections. 

Requirements Analysis

Scenario and MSC Diagrams
Use Case Modelling

Object Analysis
UML Class Diagrams

Architectural Design
SDL Hierarchical and

Interconnection Diagrams

Architectural Design Test Design

MSC Diagrams
Test Design

Detailed Design

Behavioural Design
SDL Process Diagrams

Data Modelling
UML Class Diagrams

TestImplementation

 
Figure 1. The OORT method. 

2. REQUIREMENTS ANALYSIS 

In the requirements analysis phase, the system environment is modelled and the user 
requirements are described. The analyst must concentrate on what the system should do. The 
environment where the system will operate is described by means of UML class diagrams – 
object modelling. The functional behaviour of the system is specified by MSCs organised in a 
hierarchy of scenarios - use case modelling. 
The system is viewed from the exterior as a black box with which external entities (system 
actors) interact. Both the object model and use case model must be independent of the 
solutions chosen to implement the system. 

2.1. Object Analysis 
In the description of the system environment the class diagrams are used to express the 
application and services domains. This is done by identifying the relevant entities of the 
application domain (physical and logical), their attributes, and the relationships between them. 
It is also necessary, for the sake of simplicity and expressiveness, to group entities and their 
relationships in different modules that reflect different perspectives of the system, as is 
supported by [16]. Generally speaking, there is one module for each of the actors that interact 
with the system, one for some basic system composition and other to express certain 
environment relationships. 
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Figure 2. System Architecture UML Class Diagram. 

The generic system architecture is modelled in figure 2. In order to keep simple modules, each 
of the component classes are refined in different diagrams. 

2.2. Use Case Modelling 
The use case model is composed by the scenario hierarchy and MSC diagrams. The scenario 
hierarchy should contain all the different expected scenarios of interaction between the system 
and its environment. The goal it is to model the functional and dynamic requirements of the 
system. First, the main scenarios are identified, and then they are individually refined in 
subsequent more detailed scenarios until the terminal scenarios can be easily described by a 
chronological sequence of interactions between the system and its environment. 
One problem of this approach is the scenario explosion. To deal with that difficulty we apply 
composition operators that combine hierarchically the several scenarios. Nevertheless, the 
problem is only diminished but not completely solved. It is still necessary to choose well the 
scenarios, namely to chose those which are the most representative of the system behaviour. 
The system operation is divided in phases that are organised by composition operators, and each 
phase is a branch in the scenario hierarchy. Figure 3 shows the Trip phase scenario hierarchy, in 
which we have a Floor Crossing terminal scenario which is illustrated in figure 4. 
A constant concern must be the coherence between the use case and the object models. See [14] for 
more details. 
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Figure 3. Scenario Hierarchy for the Trip Sub Scenario. 
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Figure 4. Abstract MSC for the Floor Crossing Scenario. 

3. ARCHITECTURAL DESIGN 

In this phase the system designers specify a logical architecture of the system (as opposed to 
the physical architecture). The SDL language covers all aspects of the architecture design. 
The system is composed of concurrent objects (those which have an execution thread) and 
passive objects (those which implement a set of functions invoked by concurrent objects). In 
the architecture design phase, the concurrent objects that compose the system are identified 
and organised hierarchically. This is accomplished by a combination of refinement and 
composition. The refinement is a top-down process in which higher level objects are divided 
in smaller and more detailed objects, always trying to keep a good modularity. The 
composition is a bottom-up process in which designers try to group objects in such a way that 
favours reutilization and that maintains a good encapsulation of the architectural objects. 
Figure 5 illustrates the SDL object’s hierarchy of the MLS. 
In the architectural design, the real characteristics of the environment where the system will 
operate should be considered, as well as the efficiency aspects. On the other hand, the SDL 
model should be independent of the real object distribution on the final platform.  
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Figure 5. MLS SDL Hierarchy Diagram. 

At the first level, the system actors are considered through their interfaces, and modelled as 
channels between the system top level objects and the outside world. Figure 6 shows the top 
level of the MLS architecture. 
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Figure 6. SDL Interconnection Diagram of the Top Level of the MLS Hierarchy. 



Some passive objects are also defined, such as signals with complex arguments, Abstract Data Types 
(ADTs) associated with internal signal processing, and operators to implement the I/O communication 
with the outside world (instead of signals). 
The use of SDL assures the portability of the system architecture, since the communication 
service is independent of the real object distribution, the communication channels are 
dynamic, and the objects can be parameterised. 

4. DETAILED DESIGN 

The description of concurrent and passive objects that constitute the system architecture is 
done in the detailed design phase. In other words, it is described how the system implements 
the expected services, and it should be independent of the final platform where the system will 
run. 
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Figure 7. SDL Process Diagram of the Floor Door Process. 

4.1. Concurrent Objects Design 
The concurrent objects are the terminal objects of the SDL hierarchy. They are SDL processes 
and are a kind of Finite State Machine (FSM), with its states and state transitions, called 
process diagrams. The process diagrams are built by analysing the input signals of each 
process defined in the architecture model and how the answer to those signals depends on the 
previous states. The SDL has a set of mechanisms to describe the transitions that allow a 
complete specification of the process behaviour. In the figure 7 is shown a process diagram. 
The reuse of external concurrent objects is supported by the SDL encapsulation and 
inheritance mechanisms. 

4.2. Passive Objects Design 
Some passive objects are identified during the analysis phase. Generally they model data used 
or produced by the system, and they are included in the detailed design to provide services to 
concurrent objects. There are also passive objects that result from design options, such as data 
management, user interface or equipment interface and inclusion of other design techniques. 



Although the SDL ADTs provide a way to define passive objects they are better defined by 
UML classes. So the ADTs from the SDL detailed design model are translated to UML 
classes and organised in detailed design class diagrams. 
The reuse of external passive objects is facilitated by the UML encapsulation and inheritance 
mechanisms. These characteristics of UML, and also SDL, allow for the use of other 
techniques of design in certain systems. For instance, in the case of embedded systems, it can 
be useful to use VHDL to design some physical parts. 

4.3. Portability 
The multi-tasking, the communication and the time management are implemented by the SDL 
virtual machine, and therefore are independent of the physical platform and RTOS on which 
the system will run. The system maintenance is kept at the SDL specification level, thus it is 
easier to correct and change the system. However, the portability depends largely on the 
language chosen to implement the passive objects. 

5. TEST DESIGN 

In this phase, the communication between all the elements of the system architecture is 
specified by applying detailed MSCs to describe the sequences of messages exchanged 
between them, in all the scenarios that compose the use case model. This is done by refining 
the abstract MSC of each terminal scenario from the analysis according to the SDL 
architecture model. Consequently, the test design activity can be done in parallel with the 
architecture design and serve as requirements to the detailed design phase.  
In the intermediate architecture levels, the detailed MSCs represent integration tests between 
the concurrent objects. The last step of refinement correspond to unit tests that describe the 
behaviour of processes (the terminal SDL architecture level). 
The process level detailed MSCs can be further enriched by including in each process behaviour 
detailed graphical elements such as states, procedures and timers. 
Figure 8 shows the integration test corresponding to figure 4 abstract MSC, and figure 9 
represents the respective unit test for one of the blocks. 
This phase can be a very long and resource consuming, thus substantially increasing the 
system development cost. However, it is decisive to the system success. 
The use case model reflects the user  perspective of the system. The test design should be 
spread to cover aspects related to the architecture, such as performance, robustness, security, 
flexibility, etc. 
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Figure 8 –Detailed MSC with Floor Arrival Integration Test. 



Central

LiftState ((. 3,Down,Moving .))
LiftState ((. 3,Down,Moving .))

Supervisor_1

process
/MLS/Central/Supervisor

'Window := UpdateState
(Window,1,(. 3,Down,Moving .))'

Gnome_1

process
/MLS/Central/Gnome

 
Figure 9. Detailed MSC with Floor Arrival Unit Test of Block Piso. 

6. SIMULATION 

With the ObjectGEODE simulator one can simulate SDL models, comparing them with 
MSCs that state the expected functionalities and error situations, and generating MSCs of the 
actual system behaviour. The execution of an SDL model is a sequence of steps, firing 
transitions from state to state. 
The simulator has three operation modes: interactive - in which the user acts as the system 
environment and monitors the system's internal behaviour; random - the simulator executes 
the SDL model picking randomly one of the transitions possible to fire; exhaustive - the 
simulator automatically executes the model and explores all the possible system states. 
The interactive model can be used to do the first tests to verify in a detailed way some 
important situations to correct and complete the overall behaviour of the system, i.e., to verify 
that the system really works. This mode was very useful to detect some flaws in ADTs whose 
operators were specified in textual SDL. For instance, the ADTs responsible for the calls 
dispatch, which are heavy computational, needed a little touch in the algorithms. As the SDL 
simulator has a granularity of one transition, we can not go step by step inside the operations 
executed during the transition from one state to another. But we can see that one transition 
does not follow the expected path or that some variable does not have the value it was 
supposed to have after that transition. Therefore, with that information, we can inspect more 
closely the operators called by the transition and verify their code correctness, but most of the 
times it is immediately evident which operator is wrong. This mode is specially suited for 
rapid prototyping. 
Obviously, this is not an adequate way to simulate a large number of cases. After a certain 
level of confidence in the overall application behaviour is achieved, we can test for a larger 
number of scenarios, in order to detect dynamical errors such as deadlocks, dead code, 
unexpected signals, signals without receiver, overflows, etc. To do this we simulate in the 
random mode, to verify if the system is being correctly built. This mode allows to do the 
system verification.  
However, we can do that with the exhaustive simulation, in fact we can do everything with the 
exhaustive simulation, but it would not be efficient? The exhaustive simulation requires a lot 
of computer resources and takes a lot of time. It's not something you can do everyday. The 
introduction of this mode between the interactive and the exhaustive is a very good solution 
because we can save a lot of time. We can detect most of the errors in a much quicker way.  
The exhaustive simulation allows to make the validation of the system, i.e., to verify if the 
system meets the requirements. We can check if it implements the expected services, by 
detecting interactions that do not follow some defined properties, or interaction sequences that 



are not expected. 

7. TARGETING 
The implementation of the designed system is made easier by the code generator of the 
ObjectGEODE, which automatically translates the SDL specification to C code. The 
generated code is independent of the target platform in which the system will run. The SDL 
semantics, including the communication, process instance scheduling, time management and 
shared variables, is implemented by a dynamic library. That library is also responsible for the 
integration with the executing environment, namely the RTOS. By default the 
communications are implemented through TCP/IP sockets. 
In order to generate the application, it is necessary to describe the target platform in which the 
system will be executed, This is done by means of a mapping between the architecture of the 
SDL specified system and the architecture of the C code implementation.  
The SDL architecture consist in a logical architecture of structural objects (system, blocks, 
processes, etc...) in which the lower objects (the processes) implement the behaviour of the 
described system. The physical implementation of that description consist in a hierarchy of the 
following objects: node - all the software executed by one processing unit with multi-tasking 
OS; task - unit of parallelism of the OS. One task can correspond to one of the SDL objects: 
system - Task/System (TS) mapping; Block - Task/Block (TB) mapping; process - 
Task/Process (TP) mapping; Process Instance - Task/Instance (TI) mapping. 
In the TI mapping the complete application is managed by the target OS. In the TP mapping, 
the OS is in charge of the interaction between processes, whilst the management of the several 
process instances inside the task is done by the SDL virtual machine of ObjectGEODE. In the 
case of TB mapping, the OS manages the communication between blocks, while the 
management of the SDL objects inside each block is done by the SDL virtual machine. 
Obviously, the TS mapping is the only one possible for operative systems without multi-
tasking and in each node the SDL virtual machine manages all the application. For the MLS, 
the TP mapping was chosen. 
After the code is generated, the user only has to supply the missing code for the parts that 
interact or depend directly on the platform. Therefore, the user can choose the language which 
best suits his needs and then link that code with the generated code. The ADT operators that 
do not interact with external devices, can be coded algorithmically in SDL, and thus the 
respective C code will be generated. By default, to each ADT operator corresponds one C 
function which interface is automatically generated. The figure 10 illustrates the application 
generation scheme in a very simplistic manner. 

Generated
C code

User
Code

Dynamic Library

RTOS

Physical Architecture

SDL Specification

Architecture
definition

 
Figura 10. Simplified strategy for the application generation. 



8. CONCLUSION 

The simulation is a very important phase of the system's development because it allows the 
costs reduction by decreasing the number of missed versions, i.e., it helps the designers to get 
closer to the "right at first time". The three simulation modes can be used by the order 
presented, i.e., in the order of the increasing level of system correctness. 
The code generated by the ObjectGEODE toolset is optimised for the target platform by 
means of a mapping between the SDL architecture and the physical architecture defined by the 
user. Any change in the application target it only requires a change in the mapping, so the 
system specification and its logical architecture remain the same. The user only has to supply 
the code which is target dependent. 
Because SDL is a formal language it can be used to define rules in the partition and synthesis 
of a system specification into hardware and software, as is the case of a methodology 
presented in [1]. Furthermore, the implementation can be automatic, thus limiting the manual 
coding to the non real-time operations. The generated application is scalable, because the 
logical architecture is independent of the physical architecture. The mapping between objects 
and hardware is define in the implementation phase only. 
The SDL specification, being a model expressed in a formal language, permits the automatic 
simulation of the system [3], to make early validations, and the automatic code generation. 
The simulation of a formal language is trustable since it is defined by a clear set of 
mathematical rules. Therefore, comparing to the non formalised development, the applications 
are better in terms of efficiency, less errors, flexibility and easy of maintenance. 
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1. INTRODUCTION  
The design of mixed hw/sw systems for embedded applications has been an active research 
area in recent years. Hw/sw co-synthesis and co-simulation have been mainly restricted to  
a single processor and programmable arrays attached to it, that were placed incidentally on  
a single chip (SoC). A new kind of systems, application-specific multi-processor SoC, is 
emerging with frequent applications in small-scale parallel systems for high-performance 
control, data acquisition, and analysis, image processing, wireless, networking processors, and 
game computers. Typically several DSPs and/or microcontrollers are interconnected with an 
on-chip communication network and may or may not use an operating system. In this paper, 
we want to concentrate on performance prediction of various configurations of hw and sw, 
since performance guarantees must be complied with before anything else can be decided. 
Other difficult problems such as system validation at the functional level and at the cycle-
accurate level, software and RTOS synthesis, task scheduling and allocation, overall system 
testing, etc., are not considered. 

In this paper we will study only application-specific multiprocessors and modeling their 
performance. As a suitable application for performance comparison, we have selected  



a parallel FFT (1024) benchmark (1024 points, one dimension), in real-time environment, 
with the goal of maximizing the number of such FFTs per second.  

2. ARCHITECTURES OF PARALLEL EMBEDDED SYSTEMS AND CMP 

The performance race between a single large processor on a chip and a single-chip 
multiprocessor (CMP) is not decided yet. Applications such as multimedia point to CMP with 
multithreaded processors [1] for the best possible performance. The choice between 
application-specific (systolic) architectures or processors on one hand and CMP on the other 
is yet more difficult. CMP architectures may also take several forms such as:  

- a bus-based SMP with coherent caches similar to Pentium Pro quad pack, with an atomic 
bus or a split-transaction bus; 

- a SMP with a  crossbar located between processors and a shared first-level cache which in 
turn connects to a shared main memory; 

- a distributed memory architecture with a direct interconnection network (e.g. a hypercube) 
or an indirect one (the multistage crossbar).  

As the number of processors on the chip will be typically lower than 10, at least in a near 
future, we do not have to worry about scalability of these architectures. Therefore the bus 
interconnection will not be seen as too restrictive in this context.  

Some more scalable architectures such the SMP with  processors and memory modules 
interconnected via a multistage interconnection network (the so called „dancehall“ 
organization) or a hw-supported distributed shared memory will not be considered  as 
candidates for small-scale parallel embedded systems or SoCs.  

Let us note, that the choice of architecture can often be also dictated by a particular 
application to be implemented in parallel. E.g. broadcasting data to processors, if not hidden 
by computation, may require a bus for speed, but on the contrary, all-to-all scatter 
communication of intermediate results will be serialized on the bus and potentially slower 
than on a direct communication network. Some decisions can be supported by back-of-the-
envelope calculations, others are more difficult due to varying message lengths or irregular 
nature of communications. This is where simulation fits into. 

For the sake of the presented case study, we will investigate the following (on-chip) 
communication networks: 
1. fully connected network 
2. SF hypercube 
3. WH hypercube 
4. Crossbar switch 
5. Atomic bus. 
The number of processors p = 2, 4, and 8.  The problem size of a benchmark (parallel 1D-
FFT) will be n = 1024 points. 

3. THE SIMULATION TOOL AND THE  DESCRIPTION LANGUAGE 

A performance modeling has to take characteristics of the machine (including an operating 
systems, if any) and application and predict the execution time. Generally it is much more 
difficult to simulate performance of an application in shared address space than in message 
passing, since the events of interest are not explicit in the shared variable program. In the 
shared address space, performance modeling is complicated by the very same properties that 



make developing a program easier: naming, replication and coherence are all implicit,  i.e. 
transparent to the programmer, so it is difficult to determine how much communication occurs 
and when, e.g when cache mapping conflicts are involved [5].  

Sound performance evaluation methodology is essential for credible computer architecture 
research to evaluate hw/sw architectural ideas or trade-offs. Commonly used shared-memory 
simulators rsim, Proteus, Tango, limes or MulSim [2], beside their sophistication, are not 
suitable for message passing systems. This made us to reconsider the simulation methodology 
for shared-memory multiprocessors. Here we suggest using a single CSP-based simulator 
both for message passing as well as for shared address space. It is based on simple 
approximations and leaves the speed vs. accuracy tradeoff on the user, who can control the 
level of  detail  and accuracy of simulation. 

The CSP-based Transim tool can run simulations written in Transim language [3]. It is a 
subset of Occam 2 with various extensions. Transim is naturally intended for message-passing 
distributed memory systems. Nevertheless, it can be used also for simulation shared memory 
bus-based (SMP) systems - bus transactions in SMP are modeled as communications between 
node processes and a central process running on an extra processor. Transim also supports 
shared variables, which are used in modeling locks and barriers. Until now, only an atomic 
bus model has been tested; the split-transaction bus requires more house-keeping and  its 
model is going to be  developed in a near future. 

The input file for Transim simulator tool contains descriptions of software, hardware and 
mapping to one another. In software description, control statements are used usual way, 
computations (integer only) do not consume simulated time. That is why all pieces of 
sequential code are completed or replaced (floating point) by special timing constructs SERV 
( ). Argument of SERV( ) specifies the number of CPU cycles taken by the task. Granularity 
of simulation is therefore selectable from individual instructions to large pieces of code. 
Explicit overhead can be represented directly by WAIT() construct. Data-dependent 
computations can be simulated by SERV construct with a random number of CPU cycles. 
Some features of a RT distributed operating system kernel, originally supported by hw in 
transputers, are also built into the simulator, such as process management, process priorities 
(2 levels only), context switching, timers, etc. 

The NODE construct in hardware description is used to specify the CPU speed, 
communication model and other parameters; otherwise the default values are used. The 
mapping between software and hardware, between processes and processors, is made through 
the MAP construct. Parallel processes on different processors, one process per processor, are 
created by PLACED PAR construct for MPMD or by replicated PLACED PAR for SPMD 
model of computation. 

4. THE PARALLEL FFT BENCHMARK PROGRAM 

We will illustrate the technique of optimization of hw/sw multiprocessor architecture on the 
problem of computing the 1D-, n-point-, discrete Fourier transform on  p processors in O((n 
log n)/p) time. Let  p divides n, n = 2q  is a power of two and n ≥ p2. Let the n-dimensional 
vector x [n×1] be represented by matrix X[n/p×p] in row-major order (one column per 
processor). The DFT of the vector x is given by 
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where S [n/p× p] is the scaling matrix, * is elementwise multiplication and  the resulting 
vector y [n×1] = Wn x is represented by matrix Y [n/p×p] in column major order form (n/p2  
rows per processor). Operation denoted by T is a generalized matrix transpose that 
corresponds to the usual notion of matrix transpose in case of square matrices [4]. 

The algorithm can be performed in the following three stages. The first stage involves a local 
computation of a DFT of size n/p in each processor, followed by the twiddle-factor scaling 
(elementwise multiplication by S). The second stage is a communication step that involves a 
matrix transposition. Finally, n/p2 local FFTs, each of size p, are sufficient to complete the 
overall FFT computations on n points. The amount of computation work for the sequential 
FFT of an n-element real vector is n log n / 2 “butterfly” operations, where one butterfly 
represents 4 multiplications and 6 additions/subtractions (20 CPU clocks in simulation). In 
parallel implementation the computation work done by p processors is divided into stage 1 
and 3, but the total amount of work is the same,  
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Let us note, that the work done in stage 1 proportional to (log n - log p) is much larger than 
the work done in stage 3, proportional to log p.  The only overhead in parallel implementation 
is due to a matrix transposition. The matrix transposition problem is equivalent to all-to-all 
scatter (AAS) group communication. Clearly, it requires 1 step in a fully connected topology, 
p/2 steps (a lower bound) in the SF-hypercube, p-1 steps in the WH-hypercube or a crossbar, 
and finally p(p-1) bus transactions on a bus. 

FFT processing will be done continuously in real time. Therefore loading of the next input 
vector from outside and writing the previous results from processors to environment will be 
carried out in the background, in parallel with three stages of processing of the current input 
vector (with the first stage of processing only in the shared memory case). 

5. PARAMETERS OF SIMULATED ARCHITECTURES AND RESULTS OF 
SIMULATION 

Six architectures simulated in the case study are listed in Tab.1 together with the execution 
time. The CPU clock rate is 200 MHz in all 6 cases, the external channel speed of 100 Mbit/s 
(12 MB/s) is used for serial links in  all message-passing architectures, whereas bus transfer 
rate for SMP is 100 MB/s. Downloading and uploading of input data and results were 
supposed to continue in the  background in all processors simultaneously at 8-times higher 
rate than the link speed, which is almost equivalent to the bus speed in SMP case. In message-
passing architectures the AAS communication was overlapped with submatrix transposition 
as much as possible. Optimum routing algorithm for SF hypercube and AAS communication 
requires p/2 steps and  uses a schedule tables at Fig.1. In case of WH hypercube, dimension-
ordered routing is used in every  step i, i = 1, 2,…, p-1, in which src-node and dst-node with 
the relative addresses RA = src ⊕ dst = i  exchange messages.  

 
The small cluster of (digital signal) processors, referred to as COSP in Tab.1, uses a 
centralized router switch (Omega type) with  sw/hw overhead of  5 µs, the same as a start-up 
cost of  serial links, and WH routing. The algorithm for AAS was designed to avoid 
contention using cyclic permutations [e.g (01234567), (0246)(1357), …, (07654321)] for p=8.  

Finally a bus-based shared memory system with coherent caches (SMP) has had 100MB/s bus 
bandwidth, 50 MHz bus clock, and the miss penalty of  20 CPU clocks. We will assume an  



 

Fig. 1. . Optimum schedule for AAS in all-port full-duplex 2D- and 3D- SF hypercubes 
 

atomic bus for simplicity and fair bus arbitration policy. Other types of bus arbitration 
(priority-based, random, etc.) are also feasible.   The cache block size is 16 bytes and the size 
of the cache is assumed to be sufficient to hold input data (a real vector), intermediate data 
after the first stage of FFT (a complex vector) as well as the results (a complex vector). In  the 
worst  case (p=2) the size of all these vectors will be around 10 kB, if we use REAL32 
format. We assume I/O connected via a bus adapter directly to the cache. To avoid arbitration 
between CPU and I/O, the next input and previous results are transferred in/out during the 
first stage of  the FFT algorithm. 

The results summarized in Tab.1 and plotted in Fig.2 deserve some comments. A fully 
connected network of processors is the fastest architecture for 8 processors, but  the slowest 
for 2 processors. The reason is that communication is mostly seen as an overhead, but gets 
better overlapped with communication when p increases. The cluster of DSPs (COSP row in 
Tab.1) starts with p=4 and increasing the number of processors from 4 to 8 does not make 
much  sense  because it  has small influence  on speed.   

Tab.1. Parallel FFT execution times in µs for six analyzed architectures 

 
In the SMP with shared bus, processors write the results of the n/p-point FFT computed in 
stage 1 into the local caches and do the transposition at the same time. This means that 
consecutive values of FFT will be stored with a stride required by the rule of matrix 
transposition. The following read requests by other processors at the start of stage 3 will 
generate read misses: at cache block size 16 bytes, one miss always after 3 hits in a sequence. 
Fresh cache blocks will be loaded into requestor’s cache and simultaneously into the shared 
memory. A prefetch of cache blocks has been simulated without an observable improvement 
in speed, most probably due to bus saturation. This is even worse for 8 processors than for 4, 
see Fig.2. 

As for hypercubes, the WF hypercube is superior and gives the same results as a cluster of 
DSPs. Slightly worse performance than that of a fully connected processors is balanced by 
much simpler interconnection and by a lower number of communication ports.  

 

 

      p = 2 4 8
full 436,8 180,8 138
COSP 230,4 173,1
SMP 363,5 304,7 321,6
SF cube 272 182,8
WH cube 230 174,4

relative addr. used in dimension
step 0 1 2

RA  in dimension 1 3 6 4
step 0 1 2 1 7 6

1 3 2 3 7 2 5
2 1 3 4 5 3 7



 

 

 

 

 

 

 

 

 

 

 

Fig.2. Comparison of execution times [µs]  for six architectures. 

6. CONCLUSIONS 
The performance study of the parallel FFT benchmark on a number of architectures using 
Transim tool proved to be a useful exercise. Even though the results of simulations have not 
been confronted with real computations, they can certainly serve to indicate serious candidate 
architectures that satisfy certain performance requirements. The approximations hidden in 
simulation are limiting accuracy of real-time performance prediction, but the level of detail in 
simulation is given by the user, by how much time he or she is willing to spend on building 
the model of hw and sw. For example, modeling the split-transaction bus or the contention in 
interconnection network for WH routing could be quite difficult. The latter was not attempted 
in this case study since the FFT benchmark requires only regular contention-free 
communication. This, of course, will not be generally the case. Nevertheless, simulation 
enables fast varying of sw/hw configuration parameters and studying the impact of such 
changes on performance, free from the second-order effects. In this context, the CSP-based 
Transim simulator and language proved to be very flexible, robust and easy to use. The future 
work will continue to include other benchmarks and analyze the accuracy of performance 
prediction.               
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Abstract. The process of modeling and developing of real-time and embedded 
systems should be supported by suitable methods and notations. In the paper we 
examine different approaches for customizing standard modeling language UML to 
model such systems in object-oriented analysis and design. We propose the use of 
UML standard lightweight extensibility mechanisms (stereotypes) without 
changing the UML metamodel.  Our approach allows joining advantages of 
extended sequence diagrams and timing diagrams with UML and provides 
traceability of a concept throughout system development.  The examples illustrate 
our approach. Applying lightweight UML extension mechanism allows existing 
standard UML modeling tools to be used without any adaptations. 
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1. INTRODUCTION 
The Unified Modeling Language (UML) adopted by OMG [8] as its standard modeling 
language has emerged as the software industry's dominant language. UML is a general-
purpose graphical language for specifying, constructing, visualizing, and documenting 
workproducts that are modified, or used by software-intensive systems [1]. The UML needs 
to be extended for proposes of modeling real-time and embedded systems. It can be done 
either by using UML lightweight extensibility mechanisms (such as stereotypes, constraints 
and tagged values) or by heavyweight extension mechanisms - metaclasses. Metamodel level 
is a one layer of the UML's four-level model architecture based on metamodel architectural 
pattern [5]. The metamodeling offers significant advantages. It allows formal specification of 
all modeling concepts (together with their attributes, constraints and relationships), defines a 
base for unified exchange format and makes possible the extendibility of UML, i.e. 
instantiation of new metamodel classes as subclasses of the existing metamodel classes. 
Although changing the metamodel underlying the UML offers the highest degree of 



flexibility, we have not taken it into consideration because the metamodel is not accessible or 
difficult to modification in existing UML modeling tools.  

In the paper we present an approach for modeling real-time and embedded systems using 
UML. We present a concept for distinguishing model elements with stereotypes and then we 
examine known approaches for extending UML such as extended sequence diagrams for 
modeling real-time systems and also the use of timing diagrams. 

2. EXTENDS OF STANDARD UML FOR REAL-TIME SYSTEMS 

2.1. Stereotypes 
Lightweight extension mechanisms are represented in UML metamodel as metamodel's 
classes named Stereotype, Constraint and TaggedValue. Stereotypes are a way of extending 
the basic metamodel to create a new model element as a subclassification of an existing model 
element. Stereotypes are used to mark, classify, or introduce new model elements in 
metamodel class hierarchy. Every model element may be marked with at most one stereotype, 
which is depicted in front of an element's name enclosed in double angle brackets, and/or 
represented graphical as an icon. 

To model an element, which corresponds to a feature of real-time and embedded systems, we 
may introduce new stereotypes i.e. the objects such as a processor can be divided into the 
processors <<cisc>> and <<risc>> by using a stereotype, and thus give them the different 
features. The UML already predefines some stereotypes for classes, messages, objects, and 
etc [7]. The instance class containing the stereotype <<active>> is shown in Figure 1. 

 
Fig. 1. Example class with stereotype <<active>> 

Examining the real-time systems at building the stereotypes, it should take the characteristic 
features which derive from a given application domain into consideration. Suppose our 
system consists of the typical elements of industrial automation such as: processors, drivers, 
sensors, actuators, networking, monitoring, etc. For these and similar systems, i.e. embedded 
systems., safety-critical systems, the instance stereotypes can be distinguished in the UML for 
various elements. They are presented in Table 1-3. 

Table 1. Stereotypes for nodes 
UML Type Stereotype About stereotype 

<<processor>> represents device that
executes software

<<other device>> device that can not
executes any software

Node

<<sensor>> device that monitors
course of external
processes



<<actuator>> Device that aktuates
external process or other
internal device

<<display>> device that displays
information for external
actor (user)

<<knob>> input device for external
user

<<button>> input device for external
user

<switch>> input device for external
user

<<watchdog>> sensor that waits for
fail-safe behaviour

Table 2. Stereotypes for messages (communications) 
UML Type Stereotype About stereotype 

<<synchronous>> association realized as
simple method call
(directly)

<<asynchronous-
local>>

association that crosses a
thread boundary and put
the message in target
thread’s queue

<<asynchronous-
remote>>

association that crosses a
processor boundary and put
the message in target
thread’s queue without
waiting for answer

<<synchronous-
remote>>

association that across a
processor boundary and
block sender until
receiver returns answer

<<periodic>> message is sent
periodically

<<episodic>> message is sent when event
occurs

message

<<epiperiodic>> message is sent periodic
and when event occurs

Table 3. Stereotypes for classes 
UML Type Stereotype About stereotype 
class <<active>> class is the root of an

operating system thread

2.2. Scenarios 
In each system some processes, which range the definite objects of this system, occur. Each of 
these processes consists of the elementary entities (i.e. external and internal calls, messages, 
interacts with actors, between objects etc.), whose chronological set composes a certain path 
or a branching tree through the system behavior. Such a path (or a branching tree) is called a 
scenario. Each scenario is based on a set of the objects and actors. The system behavior is 
composed of many completely independent and/or partly correlated paths. Only many such as 
scenarios produce a full image of the use-case system. Scenarios contain information about 
events both important and incidental for a system, but mostly scenarios are constructed basing 
on the most important elements. If scenarios differ only in the incidental elements, they are 
ignored. There are some various methods to describe a scenario: textual description, sequence 
diagrams and state diagrams [2]. The first method is not interesting because of its informality. 



The state diagrams do not distinguish themselves anything specific for the real-time systems. 
Therefore, we study the extended sequence diagrams.  

As we know, a sequence diagram shows the flow of messages between the objects of the 
system and the actors (Figure 2). 

 
Fig. 2. Simple sequence diagram example 

This diagram does not regard any following requirements for the real-time systems: 
- execution time of event or message 
- rise and fall time 
- initiation and dwell time 
- slack time 
- deadline 
- period 
- leading and trailing jitter. 

Therefore, some additional elements of a sequence diagram have been introduced for the real-
time systems:  

- timing marks: simple and conditioned 
- state marks 
- event mark. 

Timing marks definite the duration of the time of a single event or message. This time is 
indicated between the start and the end of message (i.e. {< 20 ms}), or as the interval between 
the events (i.e. {t1 - t2 <= 10 ms}). It is called a simple timing mark. We may also indicate the 
duration of the time of a greater number of events (i.e. {t5 - t1 < 0.5 s, but t3 – t2 < 100 ms}). 

Event marks represent the events that give rise to the message on the time line referred to the 
relevant object. The letters or symbols (shown on Figure 3 as indexed) on the time line 
written at the opposite ends of the message arrow, respectively indicate them.  

State marks are to bridge a certain gap between the sequence and state diagrams. State 
diagrams do usually not depict the time dependencies between the states, and sequence 
diagrams do not show the present state of the system. State marks are the rounded rectangles 
placed on the time line off to the relevant object. 



 
Fig. 3. Extended for real-time sequence diagram example 

Timing diagrams are another way of representing a path of the system behavior. They have 
been known to electrical engineers for a long time (as well as to people who focus on 
programming the industrial controllers) as the diagrams being used in designing the electrical 
state machines (digital). They are, however, extended: the axis X depicts the time, but the axis 
Y can represent more than two states: on and off (or 1 and 0, H and L). Along the axis X there 
are some gaps, which separate the different states.  If the system is in the defined state, a line 
(function) will be drawn in that state. On the axis Y along the state line there are special 
names of the states as well as the indicated events that give rise the relevant state (Figure 4). 

 
Fig. 4. Timing diagram for one scenario 

This diagram depicts a development of events in time in a simplification, however. This 
considers only the timing of the particular states and enables it to show the only one scenario 
(for the only one object). It is possible to place more than one scenario in the timing diagrams, 
regarding the respective periods of the duration of the states (Figure 5 and 6). 

3. SUMMARY 
The approach described above allows combining the advantages of standard modeling with 
UML diagrams adopted for real-time and embedded systems. Traceability of a concept 
throughout system development is provided. Using only lightweight UML extension 
mechanisms (stereotypes) means, that existing standard UML modeling tools can be used 
without any extensions or adaptations.  



 
Fig. 5. Timing diagram for multiple  scenarios 

 

 
Fig. 6. Complex timing diagram for one event of scenario 

In order to reach more comprehensive support for real-time and embedded systems modeling 
the next step is the integration of their features into the UML and specification of appropriate 
constructs to be defined as a special real-time and embedded systems UML profile.  
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Abstract. An architecture (including both hardware and software solutions) for an 
operating system kernel to be employed in hard real time environments is shortly 
described, and its functionality is presented. By considering its application areas, 
which comprise safety critical systems, the need for correctness of such a kernel is 
pointed out. Ways to achieve this property are identified in the context of 
appropriate correctness criteria. It is discussed how proper formal methods are 
selected for verification, and to which particular task each method is applicable. 
Experiences and observations are presented. As one of the latter, the need to apply 
both theoretical (formal) and practical methods is underlined. Therefore, a 
simulator for the kernel was developed, whose functionality is described as well. 
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1.  THE ARCHITECTURE 
The architecture of an operating system kernel considered here  (see [2] for details) can be 
characterised by an asymmetrical dual processor configuration: applications consisting of 
independent, co-operating tasks execute on a general purpose processor (Slave), whereas all 
OS kernel activities are executed on its own dedicated co-processor (Master). The latter acts 
as supervisor of all activities of the entire system, including execution of user tasks, 
scheduling, time management, memory management, interrupt and input/output event 
servicing. 

 Task scheduling is based on the earliest deadline first algorithm. This algorithm can be 
employed, because estimations of the execution times of all tasks are known a priori. The task 
processor always executes the task having the shortest deadline. Unnecessary context 
switches are thus avoided. What is more important, however, is that the execution of system 
calls does not cause task pre-emptions (with the exception of activation or continuation of 
tasks with the shorter deadlines). 

 As shown on Fig. 1, the kernel is divided into three co-operating layers. The task interface to 
the OS Secondary Reaction Layer is organised in the form of system calls, which can be 



 

 

divided into the different groups of tasking operations (activate, terminate, prevent, suspend, 
continue, resume, end), task scheduling (scheduler), task synchronisation (sync_test, 
sync_resume), task communication, and input/output operations.  
 

 
 

Fig. 1. Hardware architecture - functional diagram. 
 

System calls concerning tasks, which are received by the Secondary Reaction Layer, contain 
time (or event) conditions for actions to be performed. The actions are stored in one of the 
system tables, while the calls are passed to the Primary Reaction Layer, which notifies the 
Secondary Reaction Layer on the occurrence of the corresponding trigger events, such as the 
passage of a duration or an external interrupt (Fig. 2). Such events trigger the execution of the 
associated actions. The OS kernel was specified, mainly in the language PEARL, in the form 
of about 28 algorithms. 
 



 

 

 
Fig. 2. System call. 

 
 
2.  THE PROBLEM OF CORRECTNESS 
The kernel was designed to be used in hard real time environments. As it is broadly known, 
control systems for such environments may not crash or behave in a non-predictive manner. 
This concerns the control application itself (the code), the hardware it is running on, the 
hardware it controls, and the operating system as well. To be able to show that the proposed 
kernel can be used for such purposes, an attempt was made to proof - by the use of formal 
methods- that the kernel is reliable and dependable. 
 
There is no universal prescription for the usage of formal methods in practice. The most 
useful advice and guidelines were found in [3]. There, the following phases of formal 
verification were mentioned (Fig. 3): 
 
• Characterisation - that is to achieve a deep understanding of the application (and its 

domain area) to be verified 
• Modeling - selection of a proper mathematical representation(s) (model) most suitable for 

the application, selection of a (formal) specification language and of appropriate tools 
(theorem prover, proof checker, model checker) 

• Specification - decisions concerning the specification strategy (hierarchical levels, 
language, properties), writing the formal specification 

• Analysis - interpretation of the specification prepared, proving the 
key properties etc. 

 
From this short description at least four conclusions, having significance in practice, can be 
drawn: 
1. Detailed (informal) specification of a system is very helpful (mainly in the 

characterisation phase), 
2. Decisions concerning the selection of both a formal (mathematical) model and of tool(s) 

for verification purposes should be made in such a way that they fit to the system to be 
verified as closely as possible, and not the other way around, 

3. System properties to be proven should be named (first, they should be discovered during 
the characterisation phase), 
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4. The selection of the formal method tool is (more or less) a function of the model selected  
and the system properties. 

The formal verification of the kernel properties was based on the just described conclusions,  

 
Fig. 3. Phases of formal verification. 

 
treated as general directions. During the characterisation phase, more than 20 system 
properties were identified, the most fundamental on among them being: 
 
The deadlines of all tasks listed as ready are met (normal situation), or the deadlines cannot 
be met (this fact is known a priori) and an overload signal is raised. 
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As another result of this phase of work, the following observations were made: 
• Proving correctness of the hardware elements of the kernel would require the usage of a 

functional description. 
• In case of the system calls (specified as algorithms) Hoare Logic is needed to show, for 

example, that the algorithms properly manipulate the system data structures. 
• Some system properties will be having the form of theorems and axioms, while the others 

will be expressed as invariants. 
• Hardware and software (of the kernel) cannot be analysed separately. 
The mentioned observations have shown the need to select both a (formal) method and tools 
carefully. The latter should be able to be used both as theorem provers and model checkers.  
 
There are many popular software tools supporting different formal methods. We have finally 
chosen the Prototype Verification System (PVS). It is a general purpose tool based on higher 
order logic. In PVS, the user is required to describe system properties to be proven in a 
specification language similar to a programming language. Thanks to its popularity and 
generality, many formal methods were successfully incorporated into PVS. The experience 
from the current stage of the work (specification of all system properties in PVS) confirms 
the decisions made earlier. 
 
 
3.  THE KERNEL SIMULATOR 
Since the OS kernel was specified as a set of algorithms, there was a need to simulate it. It is 
common practice that teams applying formal methods build simulators to achieve deeper 
understanding of the functionalities to be verified. Our simulator is composed of several co-
operating programs written in Java. The communication model is based on Remote Method 
Invocation (i.e., the client/server model). The kernel itself forms one program (Simulator), in 
which threads were used to model both the task processor and the kernel co-processor 
activities. To both the memory modules and fifos, which should be accessible for different 
kernel components, exclusive access can be ensured thanks to a thread synchronisation 
mechanism built in Java. This program acts as a (RMI) server, providing the other program 
(Monitor) with all the data needed for on-line system analysis. The third program (Control 
Panel) was designed to both enable control over the execution of the OS kernel (which can be 
started, stopped, re-run, executed step by step etc.) and emulation of the external environment. 
The monitor program mentioned above also acts as a (RMI) server for programs performing 
different kinds of visualisation. The basic one is Message Sequence Chart (MSC) Trace of the 
whole system. The program animates the diagram showing the exchange of data between 
elements of the kernel. Other visualisation tools can then be added easily. Each of the 
mentioned visualisation tools can be started or stopped independently of the simulator. 
 
 
4.  CONCLUSIONS 
The usage of formal methods in practice requires planning and decision making. Important 
steps and decisions were shown for the example of a real time operating system kernel. The 
role of the traditional (informal) specification was underlined. The traditional methods (state 
charts, transition graphs, block diagrams etc.) turned out to be very useful, and form a sound 
basis for the formal verification of correctness. Both the PVS specification language and the 
tool PVS as a formal method served our purpose very well. 
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Abstract: The problem of the program modules assignment onto processors of the 
multiprocessor computing system is considered. The general statement of a task and 
initial data for its description is given. The common approach and number of 
algorithms, used for solution search, is considered and their basic features are 
analyzed. The algorithm of the solution search, using representation of parallel 
algorithm as virtual neural network with training, based on the genetic algorithms, 
is offered. The comparative estimations of clusterization algorithms and algorithm of 
a virtual network training are proposed. 

Key Words: parallel program, virtual neural network, clusterization, genetic algorithm. 

1. INTRODUCTION 

The problem of the parallel program modules assignment onto processors of the 
multiprocessor computing system is related with class of so-called NP-complex tasks. The 
goal is such distribution of the interconnected modules set for the program onto parallel 
system processors, at which the most uniform loading of processors by computing is 
provided, and also the time and cost of information interchange between modules located on 
different processors is minimized. At the exact solution of such task on condition that module 
can be assigned on any processor it is necessary to consider NM variants for an modules 
allocation on processors, where N is the number of the system processors, M – the number of 
the program modules. If N and M are great enough, the exact solution can not be found for 
acceptable time, especially when we have problem of real time control. Therefore, for the 



decision of such tasks the certain heuristic algorithms, which generally are not ensuring the 
optimum decisions, are used. 

In given report a number of algorithms to be used for distribution of the parallel program 
modules on processors of the parallel computing system is considered. The analysis of these 
algorithms, offered in [1], has allowed to estimate general heuristics and offer a search 
method of the optimum or suboptimum solution search for finite time. 

2. STATEMENT OF A TASK 

Let’s consider the multiprocessor system, in which each processor has own RAM, the 
processors are non-uniform under the performance, and there are communication channels 
between all processors. The synchronization losses for information interchange between 
processors are not taken into account. 

The parallel program, executed in system, is divided on modules, where the subset can be 
executed only on the certain processor (that have the certain resource), and other subset can 
be executed on the any processor. The module represents indivisible unit of the information 
processing (elementary operation). Thus, the module chosen for running on the processor at 
certain moment, occupies it without interruption on all time of it’s execution. 

In world practice of the decision of such tasks the methods from the graph theory and the 
network diagrams are widely applied. Let’s number of modules of the program is equal to M, 
and number of processors in system is N, then parallel program is represented as directed 
acyclic weighted graph (DAG). The graph can be described as a tuple G = (V, E, C, T), 
where: 

V - set of graph nodes representing separate modules of the program. Each of modules is 
characterized by execution time tm,n (m∈M,n∈N); 

E - set of communication edges representing connection between modules on the 
information or control continuity. The edges are directed from the module - transmitter to the 
module - receiver of the information. Weight of an edge determines cost of the information 
transfer on an edge ci,j (i, j∈M) ; 

C(M×-M) - matrix of cost determining cost of the information transfer between the 
certain modules of the program. If there is no connection between modules, then zero is put in 
the appropriate position; 

T(M×N) - matrix of task execution times for each of processors in the system. If the 
module can not be allocated onto processor, zero is put in the appropriate position. 

Each task can be executed only after the execution all of its predecessors are completed. 
After end of a task the data will transmit to all its followers. Thus, the certain similarity of this 
statement of a task with a task of a minimal cutsection finding for the network flow is 
observed. The decision of this task in the general case is decision of a task of linear 
programming. 

3. THE GENERAL APPROACH TO THE ALLOCATION TASK DECISION 

In [1] the given task is considered as a task of graph division on subgraphs (clustering), when 
each of subgraphs contains tasks nominated to the certain processor. There is a number of 
clustering algorithms, however they provide the optimum solutions on the certain subset of 
tasks, but do not provide the solutions generally. The basic ideas and characteristics of this 
group of algorithms are considered below in brief. 



All clustering algorithms begin functioning from number of clusters, equal to number of 
graph nodes. In clustering procedure separate clusters are united, if this association promotes 
achievement of the goal for algorithm. 

The clustering algorithms are based on so-called "edge zeroing". Thus the edges of 
information interchange between tasks on identical processor are considered as removed, and 
weight or cost of the communications of these edges is accepted equal 0. At definition of 
performance time of tasks graph these edges do not influence on estimations. On one step the 
algorithm can reject the certain number of edges depending on realization. 

Each algorithm uses certain heuristics at clusterization. These of heuristics determine 
edges, which should be "vanished", i. e. the edges, on which two subgraphs of tasks are united 
in one cluster. Heuristics are be of two types: 

1) Heuristics of performance - minimization of performance time, minimization of the 
communications cost, maximization of function of effective cost; 

2) Non-performance heuristics - requirement of clusterization linearity (each task has 
even one edge connecting with one of tasks for given cluster), miss of cycles in cluster, 
conformity between clusters and data distribution in system. These heuristics can be taken 
into account with a various priority, thus the results of clusterization can be essentially 
differed. In a Fig. 1 the examples of graph division are given with account of various 
heuristics. 

 
Fig. 1. Clustering examples 

The Fig. 1а represents graph for the parallel program. The graph nodes have a 
designation Ni:c, where i - number of node, c - its performance time. The graph edges have 
weight indicating time of transition on this edge in a case, when the tasks, appropriate to its 
beginning and the end, are nominated to different processors. The Fig. 1b represents an 
example of linear clusterization, 1c – nonlinear clusterization. Performance time(PT) of the 
parallel program (in relative time units - RTU) for linear clusterization (1b) PT=12.5 RTU, for 
nonlinear (1c) PT=9 RTU. 

Usually heuristics are defined as cost functions of the certain kind allowing its calculation 
for polynomial time. Thus some special cases of task graphs allowing formulate an estimation 
function are usually considered. 

The clusterization algorithms also assume that technique of "search without return " (non-
backtracking) are used. 

Each of algorithms is estimated on expenses of time necessary for search of optimum 
clusterization. The estimation is made by quantity of conditional operations v and e, where v - 
operation of the analysis for one of nodes, e - operation of the analysis for one of edges. Some 
algorithms of "edge zeroing" are below listed. 

1) Algorithm Kim and Browne's [2]. This algorithm is based on a critical path search in 
the graph and association of nodes of a critical path in one cluster. Critical path is the path, 
which has a greatest length or the sum of edges cost. 



2) Algorithm Sarkar's [3]. The essence of algorithm in sorting all edges according 
decrease of their cost and consecutive zeroing of edges of maximal cost, while it does not 
contradict the algorithm goal. The goal consists in minimization of parallel time, but it is 
transformed to minimization of communications cost between units. 

3) Algorithm of a dominant sequence [4]. Dominant sequence is a critical path in the 
graph calculated on each clustering step. Thus, later sequence can include edges from earlier 
sequence. If edge zeroing does not increase the time of start for a task, this task is added in 
same cluster, otherwise one concerns to new cluster. 

The various statements of the optimization goals impose the features on clustering result. 
All above mentioned algorithms generally give various results, and are effectively applied 
only on the limited set of tasks. The algorithm for search of a minimal cut of a network flow 
[5] takes into account simultaneously execution time for a task and time of information 
interchanges between tasks. The algorithm uses for the search the modified graph of 
intermodular connections. In this graph except for edges determining the information transfer, 
there are edges determining execution time of a task on each of processors. Graph cut 
unequivocally defines distribution of modules on processors, and weight of a cut is a total cost 
of the program performance for the given distribution of modules on processors. The 
opportunity of consecutive application of algorithm for a cuts search for greater, than 2, 
number of processors, is specified. Thus the following difficulties were specified: 

1. Unit nominated on n-th processor in multiprocessor system, will not be always 
nominated to same unit in dual-processor system. 

2. The algorithm cannot be used, if the removal of one of processors of system is made. 

4. VIRTUAL NETWORK MODEL 

In the given report the algorithm of the minimal cut search of a network flow is 
considered from the point of view of virtual neural network model, which basic concepts are 
determined in [6]. In this model set of graph elements is divided on clusters. Each element of 
cluster is closely connected to other elements in this cluster, i.e. the cost of connections inside 
cluster should be higher, than cost for external intercluster connections for this cluster. The 
connection is considered internal for cluster, if the nodes of its beginning and ending belong 
the given cluster. Thus, the localization of the data exchange inside cluster is achieved. The 
given rule corresponds to a principle of zeroing most of "expensive" connections. The model 
of a virtual network is easily scaled on any number of processors and tasks. The given model 
assumes self-organizing, i.e. alignment of estimations for separate clusters and convergence 
them to some average size. 

The ability of model to self-organizing during its definition or change allows at a correct 
choice of criteria of an estimation receive splitting the graph of tasks on processors with 
optimum cost of graph execution on the computing system. 

For evaluation function of an estimation of the received model everyone cluster is 
considered, and the general estimation is defined by the sum of estimations for all clusters. 

The goal of the graph clusterization in a virtual network is simultaneous convergence to 
high reliability for everyone cluster with the minimal loading of the appropriate processor. 
The loading is determined by the sum of performance times for tasks nominated to the given 
processor. 

The solution search for this task of linear programming is fulfilled by the methods of 
combinatorics in a combination with methods of the theory of neural networks. Thus the 
method of construction of a training sequence with the help of genetic algorithms [7] is used. 
Such method allows simultaneously to consider the whole group of the possible solutions and 



fulfill parallel search in various areas of decision space. Therefore probability of reception of 
the optimum solution is much higher. 

At the appropriate coding of the possible solution for the task of chromosome analysis 
and development of genetic operators of its change (mutation and crossover) it is possible to 
construct genetic algorithm of search with properties " search without return ". Use of various 
techniques of search: search in N iterations, search before improvement of the decision within 
the limits of some 0<ε<1, search with an interdiction of separate directions - will allow 
receive the optimum solution for acceptable time. 

5. SEARCH ALGORITHM BASED ON A VIRTUAL NETWORK TECHNIQUE 

The essence of algorithm for training of a virtual network with the help of genetic algorithms 
consists in application of neural networks training principles for training sets generated by 
genetic algorithm. Thus the virtual network is considered as multi-layered neural network 
with direct connections. 

At training model of a virtual network the Hebb principle [8] have been used : increase of 
weight of connections promoting reception of the best solution. The weight matrix of a virtual 
network is initialized by random values. Then via genetic algorithm the most acceptable 
variant of clusterization is computed according to criterion functions. This variant can be used 
as a training set for a network. 

For experiments the program model, which simulate training of a virtual network for the 
random graph, has been constructed. The results of modeling allow to make a conclusion 
about dependence them both from the size the graph, and from its density - number of edges 
between nodes. The comparison of the received results with results of Sarkar algorithm [3] is 
given below. 

The experiments were spent for random graphs, containing from 10 up to 50 nodes. The 
average performance time of the parallel program was defined, and its modules were 
distributed according to clusterization results. Besides the loading of processors actually by 
calculations which have been not connected to transfer of the data or idle times was defined. 
For each algorithm 50 experiences have been executed. 

The Fig. 2 demonstrates average loading of the processor for two algorithms, where VN - 
algorithm of a virtual network. 

Fig. 2. Loading of system processors at clusterization. 

The average loading of processors by calculations is more for algorithm of a virtual 
network. The uniformity of loading requires allocation of some tasks for processors which are 
not ensuring generally of the earliest performance a tasks. However, the result of Sarkar’s 
algorithm usually assumes presence in system of the processor which executed considerably 
large (sometimes in 2-3 times) loading in comparison with others. 
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The Fig. 3. illustrates process of training for model of a virtual network for 30 tasks. The 
training was spent for 1000 variants of clusterization. The choice of variant by genetic 
algorithm was spent in 200 iterations. 

Fig. 3. Process of training of a virtual network 

The increase of iterations number for training or choice of a training set increases time of 
solution search for a virtual network. However, the quality of the received solutions 
(performance time of the program and uniformity of loading) thus also are improved. 
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Abstract. A problem of race-free state assignment of asynchronous parallel 
automata is considered. The goal is to encode partial states of parallel automaton 
using minimal number of coding variables and excluding critical races during 
automaton operation. Requirements imposing on the partial states codes to 
eliminate the influence of races are formulated. An exact algorithm to find a 
minimal solution of the problem of race-free state assignment for parallel 
automata is suggested. The algorithm provides reducing the computational effort 
when searching state encoding. 
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1. INTRODUCTION 
The success of the control of a multiple component system depends greatly on the efficiency 
of the synchronization among its processing elements. The functions of a control of such a 
system are concentrated in one block - logic control device that should provide a proper 
synchronization of interaction between the components. In order to represent clearly the 
interaction involved in concurrent engineering system it is necessary to describe formally its 
functional and structural properties. 
As a functional model of a discrete control device to be designed a model of parallel 
automaton is proposed [1, 8, 9]. This model can be considered as an extension of a sequential 
automaton (finite state machine) to represent parallel processes. The parallel automaton is 
more complicated and less studied model in contrast with classical sequential automaton 
model. An essential difference from sequential automaton is that a parallel automaton can be 
in more than one state simultaneously. That is why the states of a parallel automaton were 
called as partial ones [8]. All partial states a parallel automaton is in at some moment form its 
global state. In that case any two of these partial states (forming a global state) are called 
parallel [8]. Any transition of automaton defines the partial state changes that cause the global 
state changes. The most of transitions (and all for asynchronous parallel automaton) are 
forced by changes of external signals. 
The design of asynchronous automata has been an active area of research for the last 40 years. 
There has been a renewed interest in asynchronous design because of their potential for high-



performance and avoidance of clock. However, design of asynchronous automata remains a 
cumbersome problem because of difficulties to ensure correct dynamic behavior. 
The important step on the way to control device hardware implementation is the state 
assignment. It is at the heart of the automaton synthesis problem (especially for its 
asynchronous mode of realization). Despite large effort devoted to this problem no 
satisfactory solutions have been proposed. A difference of this process for parallel automaton 
in comparison with the sequential one is that there are parallel states in the first one (they are 
compatible in the sense that the automaton can find itself in them at the same time). That is 
why it was suggested in [8] to code partial states with ternary vectors which should be non-
orthogonal for parallel partial states but orthogonal for non-parallel ones. After having coded 
partial states it is possible provide them with their codes. In such a way an initial parallel 
automaton is transformed from its abstract form into a structural one – a sequent parallel 
automaton or a system of Boolean functions that can be directly hardware implemented. 
The problem of state assignment becomes harder when asynchronous implementation of a 
parallel automaton is considered. The mentioned condition imposed on codes is necessary but 
is not enough for that case. The additional condition to be fulfilled is to avoid the influence of 
races between memory elements (flip-flops) during hardware operation. One of the ways to 
avoid that is to order switches of memory elements so as to eliminate critical races. 
A problem of race-free state assignment of asynchronous parallel automata is considered. The 
goal is to encode partial states of parallel automaton using minimal number of coding 
variables and to avoid the critical races during automaton operation. An exact algorithm to 
find a minimal solution of the problem is suggested. The algorithm allows reducing the 
computational effort when searching state encoding. The same problem is considered in [5] 
where another approach was suggested. The method is based on covering a family of 
complete bipartite subgraphs defining constraints of absence of critical races by minimal 
number of maximal complete bipartite subgraphs of the state non-parallelism graph. 

2. CONSTRAINTS OF ABSENCE OF CRITICAL RACES 
The asynchronous sequential automaton behaves as follows. Initially, the automaton is stable 
in some state. After the input state changes the outputs change their values as specified in 
automaton description. An internal state change may be concurrently with the output change. 
After automaton achieving a new stable state it is ready to receive a new input. Throughout 
this cycle output and inner variables should be free of glitches. In summary asynchronous 
designs differ from those synchronous since state changes may pass through intermediate states. 
The sequence of these intermediate states must be preserved in the case of multi-output 
change (when intermediate states involve the output change). It can be done with the proper 
state assignment. The 1-hot encoding [4] can ensure such a behavior, but it demands too many 
coding variables. That is why the methods of race-free state assignment are of interest. 
In [6] the constraints to ensure hardware implementation of sequential automaton to be race-
free are given. These constraints allow avoiding interference between automaton transitions 
that take place for the same input state. The codes satisfying these constraints ensure race-free 
implementation of the automaton. The encoding constraints can be represented in the form of 
dichotomies. A dichotomy is a bipartition {S1; S2} of a subset S1 ∪ S2 ⊆ S (S1 ∩ S2 = ∅). In 
considered state encoding a binary variable yi covers dichotomy {S1; S2} if yi = 0 for every 
state in S1 and yi = 1 for every state in S2 (or vice versa). A pair of transitions taking place at 
the same input is called below as competitive transitions. In [6] the following constraints of 
critical race-free encoding are given that are induced by competitive transitions of different 
types: 



1) si → sj, sk → sl (i, j, k, l are pair-wise different) give rise to {si, sj; sk, sl}; 
2) si → sj, sj → sl (i, j, l are pair-wise different) give rise to {si, sj; sl} and {si; sj, sl}; 
3) si → sj, sk → sj (i, j, k are pair-wise different) give rise to {si, sj; sk} if the output on the 
transition from sk is different than that on the transitions from si and sj (at the input considered). 
A parallel automaton is described by a set of generalized transitions (Xkl, Sk) → (Sl, Ykl) 
between the subsets of partial states. Such a transition should be understood as follows: if the 
global state of the parallel automaton contains all the partial states from Sk and the variables in 
the conjunction term Xkl assume values at which Xkl = 1, then as the result of the transition the 
automaton goes to a new global state that differs from initial one by that it contains partial 
states from Sl instead of those from Sk. More than one generalized transition may take place in 
some moment when parallel automaton functions. These transitions define changing different 
subsets of parallel partial states. There are no races on such a pair of transitions. 
In the case of parallel automaton we have generalized transitions instead of elementary ones. 
A generalized transition tkl: Sk → Sl consist of |Sk|⋅⋅⋅⋅|Sl| elementary transitions ski → slj, where ski 
∈ Sk is nonparallel to slj ∈ Sl. Let us introduce the set T(tkl, tpq) of pairs of elementary 
transitions ski → slj and spi → sqj between pair-wise nonparallel partial states taken from Sk, Sl, 
Sp and Sq generated by the pair of competitive transitions tkl: Sk → Sl and tpq: Sp → Sq. For 
compatible pair tkl, tpq of generalized transitions we have T(tkl, tpq) = ∅. 
In [2] it is shown that in order to avoid the influence of races on competitive generalized 
transitions tkl and tpq it is sufficient to avoid it on one pair of elementary transitions from the 
set T(tkl, tpq). Thus this statement gives the way of a parallel automaton partial states encoding. 
Besides this statement ensures any dichotomy constraint consists of pair-wise nonparallel 
partial states that implies the absence of a constraint forcing a coding variable to have 
orthogonal values in codes of parallel partial states. 
Let distinguish elementary uij, simple up

ni and generalized Un constraints. The first one is a 
single dichotomy constraint. The second one is associated with a pair of elementary 
transitions and can consist of one (cases 1, 3 of constraints) or two (case 2) elementary 
constraints. To avoid critical races on a pair of elementary competitive transitions one has to 
satisfy an appropriate simple constraint (one or two elementary ones). A generalized 
constraint Un induced by a pair Pn of competitive generalized transitions consists of the 
simple constraints induced by pairs of elementary transitions from its generated set T(Pn). To 
avoid critical races on Pn it is sufficient to satisfy one of the simple constraints from Un. 
Example 1. Let us consider the following parallel automaton in the form Xkl  Sk → Sl  Ykl: 
1.  'x1         s1 → s2⋅s3     y1y2  5.  x3          s3 → s6          y4 
2.  'x2 x3     s2 → s9       'y2y3  6.  x1'x2      s4 → s7        y1'y2 
3.  ' x3         s9 → s2         y2'y3  7.  'x2 x3      s5 → s8         'y3 
4.  x2          s2 → s4⋅s5     'y1y3  8.  'x3  s6⋅s7⋅s8 → s1     'y1'y4 

The partial states from {s2, s4, s5, s7, s8, s9} and {s3, s6} are pair-wise parallel as well as partial 
states from {s4, s7} and {s5, s8}. One can see, for example, that the pair t1, t8 of generalized 
transitions is competitive. The generalized constraint U18 induced by that pair consists of 3 
simple constraints: up

1 = ({s1, s2; s7} and {s1, s7; s2}), up
2 = ({s1, s2; s8} and {s1, s8; s2}) and . 

up
3 = ({s1,s3; s6} and {s1; s3,s6}). 

By analogy with the case of sequential automaton [7] the algorithm of critical race-free partial 
states assignment of parallel automaton has two steps: 1) generate and compress a set of 
encoding constraints; 2) solve these constraints to produce a partial state assignment. 



3. GENERATING AND COMPRESSING A SET OF ENCODING CONSTRAINTS 
Now an encoding problem formulation is presented that is based on a matrix notation similar 
to that used in [7] for sequential automata. A dichotomy constraint {si, sj; sk, sl} can be 
presented as a ternary (3-valued) vector called a constraint vector. Its length equals to the 
number of partial states, i-th and j-th entries are 1, k-th and l-th entries are 0 (or vice versa), 
and the other ones are “-” (don’t care). For example the dichotomy {s1,s7; s2,s9} corresponds 
to the vector “1 0 - - - -1 - 0”. 
The constraint matrix U is a ternary matrix with as many rows as critical race-free constraints 
exist (for a given automaton) and columns as partial states. The matrix U has a complex 
structure – it consist of submatrices Ui defining generalized constraints the last ones are in 
turn 1 or 2 line sectioned (separating simple constraints). 
Now we give some definitions having in view ternary vectors of the same length. A ternary 
vector a covers a ternary vector b if, whenever the i-th entry of b is σ ∈ {1,0} i-the entry of a 
is σ too. b is an inversion of a (b = 'a) if, whenever the i-th entry of a is 1, 0, “-“ the i-the 
entry of b is 0, 1, “-“ respectively. Vectors a and b are orthogonal if for at least an index i the 
i-th entries of a and b are orthogonal (1 and 0 or vice versa). An elementary constraint ui 
implicates an elementary constraint uj if uj as a ternary vector covers ui or its inversion. 
A simple constraint up

n implicates: 
– an elementary constraint uj if uj is implicated by one of the elementary constraints from up

n, 
– a simple constraint up

m if every umj ∈ up
m is implicated at least by one of unj ∈ up

n, 
A generalized constraint Uk implicates: 
– a simple constraint up

j (elementary constraint uj) if every up
kj ∈ Uk implicates it, 

– a generalized constraint Un if every up
kj ∈ Uk implicates at least one of up

ni ∈ Un. 
For computational efficiency of procedure of searching an optimal encoding it is important to 
reduce the number of rows of constraint matrix U to the minimal number that represent an 
equivalent set of constraints on the encoding. It is trivial that duplicate generalized constraints 
can be deleted. Then the number of rows of U can be compressed further by discarding 
generalized constraints that are implicated by any other generalized constraint. 
Example 2. For considered automaton we can see that generalized constraint ({s1, s7; s2, s9} 
or {s1, s8; s2, s9}) induced by the pair t2, t8 of competitive transitions implicates the elementary 
constraint {s1; s2, s9} from the simple constraint ({s1, s2; s9} and {s1; s2, s9}) induced by the 
pair t1, t2 of competitive transitions. Thus we have the following irredundant set of 
generalized constraints Uk (in the form of dichotomies) for this automaton: 
1. {s1,s2; s9},      7. {s1,s7; s2,s9} or {s1,s8; s2,s9}, 
2. ({s1,s2; s4} and {s1; s2, s4}) or {s1; s2, s5},  8. {s1,s7; s2,s4} or {s1,s8; s2,s5}, 
3. {s1,s2; s5,s8},     9. {s1; s4,s7}, 
4. ({s1,s2; s7} and {s1, s7; s2}) or {s1, s8; s2},  10. ({s1,s3; s6} and {s1; s3,s6}), 
5. {s2,s9; s4,s7},     11. {s4; s7}, 
6. {s2,s4; s9} or ({s2, s5; s9} and {s2, s9; s5}),  12. {s5; s8}. 

The last two constraints U11 and U12 are introduced since nonparallel partial states should be 
encoded with orthogonal codes (but constraint U8 does not implicates neither U11 nor U12). 

4. FINDING ENCODING OF PARTIAL STATES 
One can see that the matrix U is an encoding matrix V, but the number of coding variables 
(equaled to the number of rows) is too big. The encoding matrix V is grown from an initial 
seed constraint matrix U by its compressing at the expense of combining some constraints and 
substituting them for one constraint implicating them. 



Now we give some definitions and derive some useful properties from them. A constraint u is 
called an implicant of a set of rows of constrained matrix U if it implicates each of them taken 
separately. A set Uj ∈ U is considered as compatible if there exists its implicant having no 
orthogonal entries associated with parallel states. For example the single u11 ∈ U1 is 
compatible with u31 ∈ U3 (its implicants are {s1,s2; s5,s8,s9}, {s1,s2; s4,s5,s8,s9}, {s1,s2; 
s4,s5,s7,s8,s9}), but not compatible with u11 ∈ up

1 ∈ U10. 
We can simply find whether two rows vk ∈ V and ul ∈ U (or both from U) are compatible 
when using the notion of a boundary vector suggested in [3]. The boundary vector for any row 
uk ∈ U (or vk ∈ V) is - 4-valued vector that gives an upper bound of its grows (extension) i.e. 
it determines the potential of verifying the components of uk. In [3] the operations over 3- and 
4-valued vectors are given that help simply to find implicants. 
When concatenating two rows vk and ul (constructing their implicant) we do minimal 
extension of vk to implicate ul. In this way any i-th entry of the result of concatenation is equal 
to that of vk and ul (or 'ul). vk ∈ V is an implicant for generalized constraint Ul ∈ U if it is 
implicant for some up

li ∈ Ul. An implicant of a subset U’ of generalized constraints is 
maximal if it is incompatible with all those others (it cannot implicate any more generalized 
constraints besides those from U’). For example the implicant {s1,s2; s4,s5,s7,s8,s9} is maximal, 
but {s1,s2; s5,s8,s9} is not. 
An exact algorithm to find a minimum solution of the problem of race-free state assignment is 
based on building a set C of all maximal implicants for constraint matrix U and then searching 
a subset of V ⊆ C of minimal cardinality such that for any generalized constraint Ui ∈ U there 
exists an implicant in V implicating it. The second part of the problem is reduced to covering 
problem of Boolean matrix [7], as in the case with Quine’s table. 

4.1. Search of maximal implicants 
We use branch and bound algorithm to build all maximal implicants. Constraints are 
processed one by one in predefined order choosing (at each step) one compatible with the 
current state of the implicant formed. If we exhaust such constraints we would start 
backtracking to a previous step to modify the solution and repeat searching. 
The computational efforts can be reduced using a previously generated compatibility relation 
on the rows from U. Taking into account that any maximal implicant may satisfy only one of 
the simple constraints from each generalized constraint they all can be regarded as pair-wise 
incompatible. At each step of the algorithm it is enough to consider as candidates for 
concatenating only those rows compatible with all concatenated in the current implicant. 
Further search reduction can be received by sorting the constraints according to the degree of 
their incompatibility: the greater it is the less is branching. 
For the automaton considered there exist 17 maximal implicants. 

4.2. Covering problem statement 
Once a set C of maximal implicants is found the task is to extract from it a subset that satisfy all 
generalized constraints Uk ⊂ U. Every Uk = {uk1

p, uk2
p, …, ukn

p} is satisfied as OR (though one of 
uki

p should be satisfied) and uki
p consist of one or two uij that are satisfied as AND (both ui1 and ui2 

should be satisfied). These statements can be expressed logically (as it is suggested in [5]) by the 
formulas: Uk = uk1

p ∨ uk2
p ∨…∨ ukn

p and uki
p = ui1⋅⋅⋅⋅ui2. Substituting expressions uki

p into Uk and 
using the distributive low one can receive conjunctive normal form Uk = Uk

1⋅⋅⋅⋅Uk
2⋅⋅⋅⋅…⋅⋅⋅⋅Uk

m. Any Uk
i 

is a union of separate elementary constraints. For example generalized constraint U2 (from 
example 2) is represented as ({s1,s2; s4} or {s1; s2, s5})⋅⋅⋅⋅({s1; s2, s4} or {s1; s2, s5}). 



Now the problem is stated in the form of Quine’s table Q. Its rows correspond to implicants Ci 
∈ C and columns to conjunctive members Uk

i for all Uk. An entry (ij) of Q is 1 (marked) if Ci 
implicates j-th conjunctive member. The task is to find the minimal number of rows covering 
all columns (every column should have 1 at least in one position corresponding to rows 
chosen) [7]. The cover presenting encoding for automaton considered (examples 1,2) contains 
5 rows. So we find 5 components codes of partial states that provide the absence of critical 
races when the automaton operates: 

V = 



















−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−

00111
011

0000001
01001
1000011

 

It should be noted that some entries of matrix equal to 0 or 1 can be substituted with value 
don’t care because of usage of maximal implicants. 

5. CONCLUSION 
Unfortunately the problems considered are computationally hard ones. The growth of the 
computation time as the size of the problem increases is a practical limitation of the method 
suggested to computer-aided design systems. It can be used for solving encoding problems of 
moderate size obtaining after decomposing the whole big problem. Besides the method can be 
useful for estimation of efficiency of heuristic encoding techniques [3]. 
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Abstract. General functional decomposition has important applications in many 
fields of modern engineering and science. However, it is mainly perceived as a 
method of logic synthesis for implementation of Boolean functions into FPGA-
based architectures. In this paper, an application of functional decomposition in 
other fields of modern engineering is presented. The experimental results 
demonstrate that a method of synthesis based on functional decomposition can help 
in implementing sequential machines using flip-flops or ROM memory. It also can 
be efficiently used as a method of multilevel logic synthesis for VLSI technology. 
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1. INTRODUCTION 
Decomposition has become an important activity in the analysis and design of digital systems. 
It is fundamental to many fields of modern engineering and science [3], [6], [9], [16]. 
Functional decomposition relies on breaking down a complex system into a network of 
smaller and relatively independent co-operating sub-systems, in such a way that the original 
system’s behaviour is preserved, i.e. function F is decomposed to subfunction G and H in the 
form described by formula F = H(A, G(B)). 

Recently, new methods of logic synthesis based on functional decomposition are being 
developed [1], [4], [7]. One of the promising decomposition-based methods is the so-called 
balanced decomposition [11].  

Thanks to the fact that the multi-level functional decomposition gives very good results in the 
logic synthesis of combinational circuits, it is viewed for the most part as a synthesis method 
addressed to implementation of combinational functions into FPGA-based architectures [13], 
[15]. However, a decomposition-based method can be used beyond this field. Since in the 
sequential machine synthesis after state code assignment the process of implementation is 



reduced to the computation of flip-flops’ excitation functions, the decomposition can be 
efficiently used to assist said implementation. Application of a balanced decomposition 
method allows the designer to decide what is the optimisation criterion – circuit area or circuit 
speed. Good results produced by decomposition-based logic synthesis methods in 
implementation of combinational circuits guarantee that this method will implement encoded 
sequential machines efficiently and effectively. The balanced decomposition gives the 
designer control over the process of excitation functions’ implementation. Thanks to this, 
such undesirable effects as hazards can be avoided. Elimination of these effects can increase 
the speed of circuits.  

Modern FPGA architectures contain embedded memory blocks. In many cases, designers do 
not need to use these resources. However, such memory blocks allow implementing 
sequential machines in a way that requires less logic cells than traditional, flip-flop 
implementation. This may be used to implement “non-vital” sequential parts of the design 
saving logic cell resources for more important parts. However such an implementation may 
require more memory than available in a circuit. To reduce memory usage in ROM-based 
sequential machine implementations decomposition-based methods can be successfully used 
[10]. 

Decomposition-like synthesis methods are not limited only to FPGA-based architectures [8]. 
The balanced functional decomposition can also be used to implement digital systems in 
CPLD and even VLSI technology (gate-array or standard cell). An appropriately chosen 
decomposition strategy allows circuit synthesis, with results comparable or even better than 
those achieved with classical multi-level synthesis methods based on algebraic 
transformation. Additionally, decomposition-based methods produce logic networks that do 
not require technology mapping. 

In this paper, once some basic information has been introduced, the application of the 
decomposition to implementation of sequential machines is presented. Following that, an 
algorithm of implementation of function in VLSI technology, a variant of balanced functional 
decomposition, is presented. Subsequently, some experimental results, reached with a 
prototype tool that implements the balanced functional decomposition, are discussed. 

The experimental results demonstrate that the decomposition is capable of constructing 
solutions of comparable or even better quality than the methods implemented in university or 
commercial systems. 
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Fig. 1. Implementation of FSM using an address modifier 



2. FINITE STATE MACHINE IMPLEMENTATION 
The FSM can also be implemented through the use of ROM (Read Only Memory) [10].  

The FSM defined by a given transition table can be implemented in a structure shown in Fig. 
1 by means of an address modifier. The process may be considered as a decomposition of 
memory block into two blocks: a combinational address modifier and a smaller memory 
block. Appropriately chosen strategy of balanced decomposition may allow to reduce required 
memory size at the cost of additional logic cells for address modifier implementation. This 
makes possible to implement FSM that exceed available memory through using embedded 
memory blocks and additional programmable logic. 

3. DECOMPOSITION INTO GATES 
Different logic synthesis programs use different techniques to transform a synthesised 
network of logic gates into a form that is implementable in standard-cell or gate-array 
technology. These methods use either a multi-level representation of function for structural 
technology mapping (SIS system), i.e. a matching of the topology of synthesised network to 
the gate patterns defined in the technology library, or, for logical technology mapping, a 
calculation of the logical coverage of sub-nets of multi-level function structures by the 
functions defined by technology gates. However, if the multilevel structure does not respect 
technology constraints or is not built with a close relation to the actual target, both methods of 
technology mapping will disturb the optimally synthesised network, leading to losses in 
quality of the final product [5].  

The obvious conclusion is that there is a need to use algorithms, which allow the designer to 
implement logic structures directly in gate level representation, with special focus on VLSI 
technology constraints. Attempts are being made to use evolutional algorithms or to use 
special properties of logic functions, such as, for example, symmetries of inputs. At the 
current stage, those algorithms have to be supported by the other techniques due to the 
maximum block size they can synthesise and the class of logic function on which they can 
operate [14]. 

Balanced functional decomposition, as used to synthesise gate-level circuits, is free of these 
disadvantages [16]. It permits the elimination of the whole technology mapping process and 
can be used to synthesise large circuits consisting of any gates available in the technology 
library. At the same time, functional decomposition remains a homogeneous synthesis method 
and does not need any supporting algorithms to perform its operations. 

In the herein discussed method of functional decomposition, the technology mapping process 
is performed during serial decomposition, at stage of coding generation for G block’s outputs. 
Coding of outputs of the G block allows for many variants and can be used to adjust synthesis 
parameters to meet technology targets and to satisfy the logical coverage of synthesised 
blocks by technology gates. This allows optimisation of not only the number of gates (area) of 
the implementation but also such implementation criteria as speed [13] and power 
consumption [2].  

Experimental results show that such a solution gives very good results when used in stand-
alone synthesis procedures, as well as in algorithms supporting other synthesis methods such 
as evolutional algorithms. 



4. EXPERIMENTAL RESULTS  AND CONCLUSIONS 
The balanced decomposition was applied to implement in FPGA architectures several “real 
life” examples: combinational functions and combinational parts of FSMs. We used the 
following examples: 
• bin2bcd1 – binary to BCD converter for binary values from 0 to 31, 
• bin2bcd2 – binary to BCD converter for binary values from 0 to 355, 
• rd88 – Sbox from Rijndael implementation, 
• DESaut – combinational part of the state machine used in DES algorithm implementation, 
• 5B6B – the combinational part of the 5B-6B coder, 
• count4 – 4 bit counter with COUNT UP, COUNT DOWN, HOLD, CLEAR and LOAD. 

Table 1 
FPGA based architecture EPF10K10LC84-3 

Example 
DEMAIN MAX+Plus II FPGA 

Express 
Leonardo 
Spectrum SIS 

bin2bcd1 6 41 6 6 6 
bin2bcd2 39 505 225 120 136 
rd88 167 332 341 245 248 
DESaut 28 46 25 30 32 
5B6B 41 92 100 49 51 
count4 11 74 17 11 13 

For the comparison following synthesis tools were used: MAX+Plus II ver. 10 Baseline, 
FPGA Express 3.5, Leonardo Spectrum ver. 1999.1, SIS and DEMAIN. Logic network 
produced by all synthesis tools were implemented in EPF10K10LC84-3, the FPGA device 
from FLEX family of Altera. For VLSI implementation comparison, examples from a 
standard benchmark set were used [17].  

Application of decomposition methods in area of machine learning was demonstrated with 
use of examples from a standard benchmark set as well as functions from area of knowledge-
based systems.  

Table 1 shows the comparison of our method based on balanced decomposition as 
implemented in tool DEMAIN with other methods compared tools. The table shows the 
comparison of logic cells needed for implementation of given examples. Results of 
implementation in FPGA architecture show that the method based on balanced decomposition 
gives better results than other tools used in the comparison. The worst results are produced by 
the Altera MAXPlus+II.  

Table 2 
FF_MAX+PlusII FF_DEMAIN ROM AM_ROM 

Example  
LCs/Bits Speed 

[MHz] LCs/Bits Speed 
[MHz] LCs/Bits Speed 

[MHz] LCs/Bits Speed [MHz] 

DESaut 46/0 41,1 28/0 61,7 8/1792 47,8 7/896 47,1 
5B6B 93/0 48,7 43/0 114,9 6/448 48,0 – 3) – 3) 

count4 
72/0 
18/0 1)

 

44,2 
86,2 1) 

11/0 
13/0 2) 

68,5 
90,0 2) 

16/16384 – 4) 12/1024 39,5 
1) FSM described with special AHDL construction; 2) decomposition with the minimum number of 
logic levels, 3) decomposition not possible; 4) not enough memory bits to implement the project 

 



Since, upon the encoding of the FSM’s states, the implementation of such FSM architectures 
involves the technology mapping of the combinational part into target architecture, the quality 
of such an implementation strongly depends on combinational function implementation 
quality. In Table 2 a comparison of different FSM implementations are presented. Each 
sequential machine was described by a transition table with encoded states. We here present 
the number of logic cells and memory bits required (i.e. area of the circuit) and the maximal 
frequency of clock signal (i.e. speed of the circuit) for each method of FSM implementation. 
The columns falling under the FF_MAX+PlusII heading present results obtained by the Altera 
MAX+PlusII system in a classical flip-flop implementation of FSM. The columns under 
FF_DEMAIN show results of implementation of the transition table with the use of balanced 
decomposition. The ROM columns provide the results of ROM implementation; the columns 
under AM_ROM present the results of ROM implementation with use of address modifier. It 
can be easily noticed that the application of balanced decomposition can improve the quality 
of flip-flop as well as ROM implementation. Especially interesting is the implementation of 
the 4-bit counter. Its description with a transition table leads to strongly non-optimal 
implementation. On the other hand, its description when using a special Altera HDL 
(Hardware Description Language) construction produces very good results. However, 
utilization of balanced decomposition allows the designer to choose between whether area or 
speed is optimized. The ROM implementation of this example requires to many memory bits 
(the size of required memory block exceeds the available memory), thus it can not be 
implemented in given structure. Application of functional decomposition allows reducing the 
necessary size of memory, what makes implementation possible.  

Results presented in Table 3 demonstrate the performance of decomposition-based method in 
implementing the digital circuits into two-input gates. The comparison was performed for a 
set of standard benchmarks [17]. The comparison of the results was carried out among the 
functional decomposition method, a classical, multi-level synthesis approach (represented by 
algorithms of the SIS system [5]), an evolutional algorithm supported by two different 
versions of decomposition (the Shannon decomposition and a balanced functional 
decomposition) [14], and decomposition supported by a function’s information relationship 
measures [7]. 

Table 3  
Evolutional algorithm supported by 

Example 
Functional 

decomposition 
algorithm 

SIS 
(with modified 

rug script.) 
Shannon 

decomposition + 
MUX 

balanced 
decomposition 

Gendec – 
decomposition 
supported by 

function’s 
relationship 
measures. 

xor5 4 8 – – 4 
shift 21 20 – – 15 
rd53 18 22 21+3 16 36 
lion 14 13 – – 15 
alu2 61 60 512+63 71 – 
adr4 27 21 – – – 
9sym 36 188 144+31 37 – 
5xp1 76 91 121+15 61 – 

 

Balanced decomposition produces very good results in combinational function 
implementation in FPGA-based architectures. However, results presented in this paper show 
that balanced functional decomposition can be efficiently and effectively applied beyond the 



implementation of combinational circuits. It can also be used in other fields of modern 
engineering. 
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Abstract. This paper deals with the possibility of description and 
decomposition of the finite state machine (FSM). The aim is to obtain better 
placement of a designed FSM to the selected FPGA. It compares several methods 
of coding of the FSM internal states with respect to the space (number of the CLB 
blocks) and time characteristics. It evaluates the FSM benchmarks and looks for 
such qualitative properties to choose the best method for coding before performing 
all FOUNDATION algorithms because this process is time consuming. The new 
method for coding of the internal FSM states is presented. All results are 
documented by experiments. 
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1. INTRODUCTION  
Most research reports and other materials devoted to searching of the “optimal” coding of the 
internal states of FSM are based on minimal number of internal states and sometimes also on 
minimal number of used flip-flops in their hardware realization. The only method how to get 
the really optimal results is testing of all possibilities, [1]. But sometimes “wasting” of the 
internal states or flip-flops is better solution due to speed of the designed circuit. The most 
coding methods are not based on recently used structures, like different types of FPGA or 
CPLD. Therefore we try to compare several types of sequential circuit benchmarks to search 
the relation between the type of this circuit (number of the internal states, inputs, outputs, 
cycles, branching) and the coding method with respect to their implementation by XILINX 
FPGA. 
 
We have worked with the CAD system XILINX FOUNDATION v2.1i during all our 
experiments. We have used the benchmarks from the Internet in KISS2 format, some coding 
algorithms from JEDI program and system SIS 1.2 [7]. First of all we have classified the FSM 
benchmarks to know the quantitative characteristics of them: number of internal states, inputs, 
outputs, transitions (i.e. the number of arcs in the state transition graph - STG), maximal 
number of input arcs, maximal number of output arcs to and from STG nodes, etc. We have 
compared eight coding methods: “one-hot”, binary, Johnson and Gray that are implemented in 
FOUNDATION CAD system; we have implemented Fan-in and Fan-out oriented algorithms 



 

 

and the algorithm “FAN” connecting Fan-in and Fan-out ones [1], [5] and our original 
method called “own” that will be presented in this paper. The second group of our 
experiments has been directed to the decompositions of the FSM. The final results (number of 
the CLB blocks and maximal frequency) were obtained for concrete FPGA implementation 
(Spartan XCS05-PC84). 

2. METHODS  

2.1. Coding methods 
“One hot” method uses the same number of bits as the number of internal states - the great 
number of internal variables is the main disadvantage of this method. The states, that have the 
same next state for a given input, should be given adjacent assignments ("Fan-out oriented"). 
The states, that are the next states of the same state, should be given adjacent assignments 
("Fan-in oriented"). The states, which have the same output for a given input should be given 
adjacent assignments (this will help to cover the 1's in the output Karnaugh-maps; "output 
oriented"). Very popular and frequently used method is the binary code, that uses the 
minimum number of internal variables, and the Gray code with the same characteristics and 
adjacent codes for a sequence of states. First partial results based on these 7 methods and 
benchmarks characteristics were presented in [3]. We have found out, that binary coding is 
better than “one hot” coding for those FSM, which fulfil the following condition: STG that 
describes the FSM should be complete or nearly complete. If the ratio of average output 
degree of a node to the number of states is greater than 0.7, than it is better to use the binary 
coding. On the contrary, when this ratio is low, “one hot” coding is better. This qualitative 
characteristic property of the FSM benchmarks is defined as: 

AN = AverageOutEdges/(NumberOf States - 1) (1) 

The value AN = 0.7 were verified on benchmarks and on our specially generated testing FSM 
[4]. 

2.2. Method “own” 
Our original method combines the “one-hot” and binary coding methods. It is based on the 
partially FSM internal state decomposition. The global algorithm could be described as 
follows: 

a) All FSM internal states Qi are placed to the set S0 – not yet classified states 

b) From all S0 elements select the state Qi with the most number of transitions to the another 
disjoint states from S0. This state Qi is taken away from S0 and becomes the first member 
of the new set Sgroup 

c) Construct the set of neighbour internal states of all members of Sgroup – Sneighbour.  Compute 
the score [4], that expresses the placement suitability for a state Qj into Sgroup, for all states 
from Sneighbour. The state with the highest score add to Sgroup . The score is a sum of: 

� The number of the transitions from Qj to all states from Sgroup multiplied by the 
constant 10; 

� The number of such states from Sgroup the transition exists from Qj into those ones 
multiplied by the constant 20; 

� The number of the transitions from Qj to all neighbour internal states from Sgroup (i.e. 
to all states from Sneighbour ) multiplied by the constant 3; 



 

 

� The number of such states from Sneighbour  the transition exists from Qj to those ones 
multiplied by the constant 6; 

� The number of the transitions from all internal states from Sgroup to Qj multiplied by 
the constant 10; 

� The number of such states from Sgroup the transition exists from those ones into Qj 
multiplied by the constant 20; 

� The number of the transitions from all neighbour states of Sgroup (placed in Sneighbour) to 
Qj multiplied by the constant 3; 

� The number of the neighbour states in Sneighbour the transition exists from those ones to 
Qj multiplied by the constant 6; 

d) Compute the AN (1) ratio for Sgroup. When this ratio is grater then the “border ratio” (the 
input parameter of this algorithm, according our experiments usually 0.7) the state Qj 
becomes the real member of Sgroup. Now continue by step c). When the ratio is less then 
the “border ratio”, state Qj is discarded from the Sgroup and this set is closed. Now continue 
by step b). 

e) When all internal states are placed into some set Si and S0 is empty, the internal state code 
can be constructed. It is connected from the binary part (serial number of the state in its 
set in binary notation) and the one-hot part (serial number of a set in one-hot notation). 
The number of binary part bits is equal to b where 2b greater or equal to the maximum 
number of states in sets. The number of one-hot part bits is equal to the number of sets Si. 

Example (lion benchmark [7], border ratio 0.7): 

 

-0/0
11/0

01/- 0-/1

10/100/1

11/1

01/1

1-/1
0-/1

11/0

st0 st1

st2st3

 
Obr.1. STG of the lion benchmark 

 

a) All FSM internal states Qj are placed to the set S0 – not yet classified states 

S0 = {st0, st1, st2, st3} 
b) For all S0 elements compute the number of transitions to the another disjoint states from S0 

(st0…1, st1…2, st2…2, st3…1). Choose the state with the highest value and construct the 
new set S1: 

S0 = {st0, st2, st3}, S1 = {st1} 
c) Construct the set of neighbour internal states of all members of S1 – Sneighbour: 

S0 = {st0, st2, st3}, S1 = {st1}, Sneighbour  = {st0, st2} 

Compute the score for all states from Sneighbour: 



 

 

st0score = 1.10+1.20+2.3+1.6+1.10+1.20+2.3+1.6 = 84 
st2score = 1.10+1.20+1.3+1.6+1.10+1.20+1.3+1.6 = 78 

Choose the state with the highest score and add it to S1: 

S0 = {st2, st3}, S1 = {st0, st1}, Sneighbour  = {st2} 

d) Compute the AN (1) ratio for the elements from S1: AN = 1.0. AN is grater then 0.7, 
therefore the state Qj becomes the real member of S1. Now continue by step c).  

c) Try to add the state st2 into S1 and compute the AN. Because AN = 0.66 state st2 is 
discarded from the S1 and this set is closed. Now continue by step b). 

At the end all internal states are placed into 2 groups: 

S1 = {st0, st1}, S2 = {st2, st3} 
Now internal state code is connected from the one bit binary part and the two bits one-hot 
parts: 

st0 … 0/01 

st1 … 1/01 

st2 … 0/10 

st3 … 1/10 

3. EXPERIMENTS 

The conversion program between KISS2 format and VHDL was necessary to build - we have 
implemented the converter K2V_DOS (in C++ by translator GCC for DOS OS) [3], [4]. The 
K2V_DOS program allows an acquisition of information about the FSM like e.g.: node 
degree, number of states, number of transitions, etc. The FSM in the VHDL description, that 
was created by the K2V_DOS program, can be described by different ways (with different 
results): 
- one big process sensitive to the clock signal and to the input signals (one case statement is 

used in this process - it selects active state and in each branch of the case there are if 
statements, which define next states and outputs - this is the same method, like the 
XILINX FOUNDATION uses for conversion between STG and VHDL [8]);  

- three processes (next-state-proc for implementation of the next-state function, state-dff-
proc for asynchronous reset and using D flip-flops and output-proc for the FSM output 
function realization). To overcome the XILINX FOUNDATION optimization for the “one-
hot” coding method we have used direct code assignment, too. 

The K2V_DOS program system can generate our special testing FSM (for more precise setting 
of the “border ratio” AN). We have generated the Moore type FSM with the determined 
number of internal states and mainly the determined number of the transitions from the 
internal states. Our FSM has the STG with the strictly defined and the same number of 
transitions from all states. The resulting format is the KISS2 format – e.g. 4.kiss testing FSM 
has the STG with four edges from every internal state (node). Both the first and also the next 
state connections are generated randomly to overcome the XILINX FOUNDATION 
optimization for the counter design.  
The K2V_DOS program can generate different FSM internal state coding by methods binary, 
Gray, Johnson, one-hot, Fan-in, Fan-out and FAN and “own”. All benchmarks were 



 

 

processed by DECOMP program to generate all possible types of decompositions (in KISS2 
format due to using the same batch for FPGA implementation). 

4. RESULTS  
We have performed about 1000 experiments with different types of coding and decomposition 
methods for 50 benchmarks. We have obtained the great amount of the results processed to 
the visual graphs. One of them expressing the comparison of the “one-hot”, binary and “own 
0.7” coding methods with translation of them into three VHDL processes and direct code 
assignment is presented on Fig. 2.  

We can present the following conclusions based on our experiment results: 

- the binary coding method gives the best results for FSM with few internal states (5) and 
for FSM with AN > 0.7 (the state transition graph with many cycles) 

- “one-hot” coding methods is better for other cases and mostly generates the faster circuits 
(but the XILINX FOUNDATION uses optimization methods for “one-hot” coding) 

- the original “own” method is universal one because it combines the advantages of both 
“one-hot” and binary methods (see Fig. 2) 

- for such FSM implementation where the majority of the CLB blocks are used (e.g. 90%) 
the “one-hot” methods gives better results mainly with respect to the maximum working 
frequency due to easier wiring 

- all FSM decomposition types are not advantageous to use in most cases due to great 
information exchange - the parallel decomposition is the best one (when it exists)  

- the different strategy for looking for the  partitions – the best FSM partition is not that one 
with minimal number of internal states but that one with the minimal sets of input and 
output symbols – could be used for FPGA implementation  
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Abstract. The paper presents some hardware solutions for the bit-byte CPU of a 
PLC, which are oriented for maximum optimisation of data exchange between the 
CPU processors. The optimisation intends to maximum utilisation of the 
possibilities given by the two-processor architecture of the CPUs. The key point is 
preserving high speed of instruction processing by the bit processor, and high 
functionality of the byte processor. The optimal structure should enable the 
processors to work concurrently for as much of the tome as possible, and minimise 
the situations, when one processor has to wait for the other. 

Key Words. CPU, Logic Control, PLC 

1. INTRODUCTION 
One of the main parameters (features) of Programmable Logic Controllers (PLC) is execution 
time of one thousand of control commands. This parameter evaluates the quality of PLC. Due 
to this fact it is important to design and construct a CPU with a structure enabling fast control 
program execution. The most developed CPUs of PLCs of many well-known manufacturers 
are constructed as the multiprocessor units. Particular processors in such units execute the 
commission for them tasks. In this way, we obtain a unit, which makes possible parallel 
operating of several processors. For such CPU the main problem is the way of task assuming 
to particular processors and finding a structure of CPU capable to solve such assigning task in 
practice. 

The bit-byte structure of CPU, in which task assignment is predefined, are often met in real 
solutions. The tasks operating on discrete input/outputs are executed by bit-processor. Such 
processor may be implemented in programmable structures as PLDs or FPGA [3,4]. It makes 
the positive effects on user programme execution time (fast operating processor). On the other 
hand a byte-processor (word-processor) is built on the base of standard microprocessors or 
embedded microcontrollers. The byte processors are used for control of analogue objects, for 
numeric data processing and for execution of the operations indirectly connected to user 
(control) program but connected to the operating system of the programmable controller of a 



CPU. Set of such operations consists of timer servicing, reading-out of the input states, setting 
of the outputs, LAN servicing, communication to the personal computer and so on. 

Very interesting problem and difficult for realisation in programmable controller is timer 
module [5]. A time interval is counted, asynchronously to the program loop execution. It 
causes difficulties with testing of an end of a counted interval. At long time of program loop 
execution and short counted time intervals serious errors may occur. The accuracy of time 
intervals counting may be increased by special program tricks but achieving good results is 
typically connected to prolongation of control program loop. In some programmable 
controllers the end of time interval counting interrupts the control program and the service 
procedure of this interrupt is called however the number of interrupts is typically limited and 
only a few timers can act in this way. That is why it would be worth to reflect on the way of 
improving of an accuracy of time counting in the programmable controllers. Another problem 
is related with this matter. As it was mentioned above the scan time is one of the most 
important parameters of programmable controllers. However it seems that throughput time 
more precisely describe the dynamic features of a programmable controller. Naturally it may 
be said that throughput time is closely linked to the scan time unless a programmable 
controller does not execute a control program in serial cyclic way. Let us imagine a 
programmable controller, which operates on the rule based on processing of the segments 
(tasks) of the control program. These segments are triggered only by the changes of the input 
signals (input conditions). In this situation one can talk about throughput time (response time) 
but it would be difficult to talk about the time of program loop execution. It would be only 
possible to define the mean time of program loop execution for given application. For the 
application where the signals change sparsely the mean time of program loop execution will 
be much less than the maximum time evaluated for execution of a whole program. In 
particular applications the certain group of signals may do changes more often the other 
signals. The segments of the control program triggered by these signals will be executed often 
than the other segments. To avoid situation where two or more segments are triggered at the 
same moment it would be necessary to assign the priorities to the control program segments. 
The described method of programmable controller operation changes the approach to the 
preparing of control program but it seems to the authors that in such programmable controller 
the problems with for example timers will be easier. It is not necessary to observe the moment 
when time interval will be completed. At the end of the time interval counting the suitable 
segment may be called and executed. It means that the currently executed program segment 
should be interrupted. It depends on the priorities assigned to the particular program 
segments. 
Such type of programmable controllers CPUs will be the subject of the future work while in 
this paper the few proposals of programmable controller bit-byte CPU structures are 
presented. These are CPUs with serial-cyclic program execution but they are structurally 
prepared to event-triggered operation. 

2. THE REQUIREMENTS FOR PROGRAMMABLE CONTROLLER CPUs 
The aim of the work which results are described in the paper was design and implementation 
of programmable controller CPU based on bit-byte structure. The main design condition was 
maximum speed of control program execution. This condition should be met rather by 
elaborating of suitable structure than application the fastest microprocessors. Additionally it 
was assumed that bit processor will be implemented using catalogue logic devices or 
programmable structures while as the byte processor will be used the microcontroller 80C320 
from Dallas Semiconductor. The CPU should be capable of carrying-out of logic and 



arithmetic operations, conditional and unconditional jumps, test states of the inputs, set or 
reset outputs, timers, counters, and so on. 

In the simplest case each programmable control circuit might be realised as microprocessor 
device. We have to remember about application in which we are going to use constructed 
logic controller. Those applications force special requirements and constraints. Controlled 
objects heave a great number of binary inputs and outputs while standard microprocessor (or 
microcontroller) operate mainly on bytes. Instruction list of those devices is optimised for 
operation on bytes or words (some of them can carry out complicated arithmetical calculation) 
variables that are not required in industrial applications. Each task is connected with reading 
external data, computation and writing computed data to the outputs. Logical instructions like 
AND or OR on individual bits take the same amount of time. When we take under 
consideration number of binary inputs and outputs, those in greater units reach number of 
thousands. In such cases parallel computation of all inputs and outputs is impossible. In this 
situation all inputs and outputs must be scanned and update sequentially as fast as it is 
possible. If we would like to achieve good control parameters bits operation should be done 
very quickly. 

Creation of specialised bit processor, which fast can carry out bit operations is fully excused. 
If there is a need of computation of byte data for example from analogue to digital converters 
or external timers, it is required to use additional 8, 16 or even 32 bits processor or 
microcontroller. General structure of that device was presented in [1].  

Presented solution consists of two processors. Each of them has its own instruction set. 
Instruction decoder recognises for which processor instruction was fetched and sends 
activation signal to it. 

 Basic parameter that was taken under consideration was program execution speed. 
Following assumption were made in order to support two processors operation 

• Separate address buses for bit and byte processors; 

• Two data buses: 1 bit wide for bit processor and 8 bit wide for microcontroller; 

• Two control buses with signals RD and WR of microcontroller, IORD and IOWR of 
bit processor, REFRESH (latches state of all inputs and outputs at once) and ERROR 
(immediate switch off of all external modules of controller). 

3. SELECTED STRUCTURES OF BIT-BYTE CENTRAL PROCESSING UNIT 
In this paragraph different conception rules of co-operation bit and byte processor are 
presented, that allow achieving maximal execution speed by logic controller. 

The most typical solution is a circuit with separate program and data memories for both 
processors. There is also common area of memory through which processors exchange 
information between them in order to: 

• exchange data; 

• set and clear flags that request execution of specific tasks instead of exchanging whole 
instruction. 

Other conception is presented in [2]. It based on similar idea as previously presented. This 
solution assumes common program memory for both processors. Each of them has unique 
operation codes. One of the processors fetches operation code and recognise it. If fetched 



instruction is assigned to it, it is immediately executed; in other cases it is send to the second 
processor for execution. 

The unit is equipped with 3 memory banks for control program: 

• main memory; 

• standard procedures memory; 

• program memory for byte processor. 
Such CPU has three states of operation: 

• both processors execute control program; 

• one processor operates; 

• bit processor executes control program while byte processor actualises the timers. 
The modification of the above solution, referring to the first conception is the unit where bit 
processor generates pulses activating the sequential tasks in byte processor. These tasks are 
stored in suitable areas of byte processor memory. 

Finally the CPU structure presented in work [2] was accepted. This structure was additionally 
equipped with the system of fast data exchange keeping easy way of PLC programming. This 
system – in simple words – causes that the processors do not wait for finishing their 
operations but they execute next commands up to the moment when command of waiting for 
result of operation carried-out by the second processor. The important thing is the suitable 
program compiler and the way of control program by the user. 

Bit processor delivers commands to the byte processor through the command buffer 
informing about it by means of NEXT=0- signal. On the other hand byte processor after 
accepting of a command sends to the bit processor EMPTYBUF signal (Fig.1). The 
processors may transfer one to other the result of recently executed operations through F1B 
and F2B flip-flop. 
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Fig. 1. The block diagram of the CPU based on exchanging of the flags and commands 



Two situations cause that the speed of data exchange goes down: 

• one processor has not yet execute operation expected by the second processor and this 
one have to wait for the result (READYF2B=0 or READYF1B=0); 

• second processor has not yet received the previous result and the first one can not 
write the next result (EMPTYF1B=0 or EMPTYF2B=0). 

To exclude waiting states the programs has to be written and compiled in such a way to get 
these two processor working possibly parallel. However in the second case one can take into 
account the solution basing on increased number of the accessible data exchange flip-flops or 
on assignment of common memory area for the data exchange purpose. 

At that time appears the need for assignment of the marker to every task. One can try to solve 
the marker problem in the following ways: 

• the fixed marker can be assigned to every type (kind) of operation, e.g. comparison 
instruction (of the byte processor) have to set the marker at the given (particular) 
address, and, say, the counter increment instruction will use the marker of other 
address (this solution is not flexible, both processors need for frequent access to the 
common memory area, or many flip-flops have to be used); 

• the successive tasks will use successive markers and this process will repeat 
periodically after the number of markers is run out. The assignment process can be led 
automatically by the compiler. However this solution can be applied for the instruction 
sequences not disturbed by jumps (except the jump to the beginning of program loop). 

• the third way is to charge the programmer with the duty of marker assignment. Marker 
has to contain the operation result, or condition has to be read from that marker. In 
similar way the Modicon PLCs are programmed where instruction blocks outputs 
carrying results can be assigned to the marker by programmer himself. 

4. SYNCHRONISATION OF PROCESSORS 
The designed CPU can work in one of two modes: 

• dependent work – the parallel – serial work of processors with transferring of  all the 
necessary data, co-ordinated by the bit processor which is faster. It is basic work mode 
of the designed CPU. All the mechanisms described for the solution of Fig.1 are made 
use of; 

• independent mode – fully parallel. Both units work fully independent, each one has its 
own program so there is no waiting for the instruction transfers. There are no data 
transfers between the two processors. Unfortunately such a mode is applicable only 
some particular control programs. 

5. CONCLUSION 
Studies on the information exchange optimisation between the processors of the bit-byte CPU 
of the PLC have shown the great capabilities and many possible applications of this 
architecture. 

 When considering many ways of optimal application of this architecture it seems that 
quite serious problem is lying in some kind of accepted standard, which describes the way the 
CPU of PLC is executing the control program should be looked at. 



One should go farther in such considerations and try to solve the program execution method 
taking more task - oriented (problem - oriented) rather than serial – periodical approach. 

It seems that probably better results can be obtained when PLC is assumed an event – 
dependent block (module), which executes particular precisely determined tasks in response 
to particular constraints i.e. particular elements change of state. 

In CPU of that type many problems will be connected with change scanning, because not only 
inputs and outputs but also markers, timers and counters should be scanned. Other problems 
will be related to continuous signals. 

It seems however that the described architecture “enriched” with an event – dependent control 
program execution is quite interesting solution of the CPU for PLC. 
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Abstract. The models and methods for digital design analysis and test generation, 
where problems of digital design testing are formalized as linear equations, are 
offered. The method of test generation for stuck-at faults, which uses fault list cubic 
coverings (FLCC) for single activation path building, is developed. The ATPG for 
digital designs created in Active-HDL is offered as well. The obtained tests are 
used for digital design verification by means of simulation in Active-HDL. 
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1. MATHEMATICAL APPARATUS FOR FSM MODEL ANALYSIS 

Sequential primitive automatic model [1,2] is represented as follows: 
 

M=<X, Y, Z, f, g>,           (1) 
 

where X=(X1,X2,...,Xi,...,Xm), Y=(Y1,Y2,...,Yi,...,Xh), Z=(Z1,Z2,...,Zi,...,Zk) – are sets of 
input, internal and output State (FSM) variables, the interconnection of which is described by 
the following characteristic equations: 

Y(t)=f[X(t-1), X(t), Y(t-1), Z(t-1)]; 

Z(t)=g[X(t-1), X(t), Y(t-1), Y(t), Z(t-1)].        (2) 
 

Variables Z(t) are external and, therefore, they are observed on output  lines. Variables Y(t) 
are internal and, therefore, they are non-observed. FSM variables  format for cubic covering, 
corresponding to (1), is as follows: 

)t(Z)t(Y)t(X
)1t(Z)1t(Y)1t(X −−− . 

FSM model from Fig.1 corresponds to the mentioned format. 
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Fig.1. The primitive’s state model 

Functional sequential primitive is specified by components: 
 

F2 = <(t-1,t),(X,Z,Y),{A2}>,          (3) 
 

where (t-1,t) – are two state consecutive frames in function description; (X,Z,Y)– are vectors 
of input, internal and output variables; {A2} – is a two-frame alphabet of FSM state 
(transition) description: 
A2={Q=00,E=01,H=10,J=11,O={Q,H},I={E,J},A={Q,E}, 
B={H,J},S={Q,J},P={E,H},C={E,H,J},F={Q,H,J},L={Q,E,J}, V={Q,E,H},Y={Q,E,H,J}, 
A1={0,1,X={0,1}}, (U)}. 

Execution of the concatenation operation (#): 
 

YIOX
BJH1
AEQ0
X10#

C#C t1t =− .          (4) 

 
Problem 1. FLCC L for the vector T and the primitive covering С is computed by a linear 
equation 

 
LCT =⊕ ,             (5) 

 

where ⊕ – is a binary coordinate operation XOR which determines interaction of components 
T, C, L in the three-valued alphabet: 
 

.
XXXX
X011
X100
X10

T Cijj

⊕
=⊕           (6) 

 

The universal formula of FLCC analysis obtained as a result of application of (3) to the test-
vector T and to covering of the multioutput primitive C for definition of detectable faults Lr 
by output r, is as follows: 
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where jL  – is considered as a line j fault list that  should be subtracted from faults which are 
detected at non-output primitive lines; jL – are faults that are required to be intersected with 
non-output lists. 

 
Problem 2. Test for FSM faults, which are set by 1

iL -cube from FLCC )L,L(L 1
i

0
i= , is 

defined by equation  
 

k1 TCL
i

=⊕             (8) 
 

where 1
i

0
i L,L  - are cubes having “0” or “1” values on output coordinate r. At the same time 

vectors-candidates to test kk
t TT ∈ are defined. From set kT  the test T is formed, where the 

set TTt ∈  is regarded as an element. Each TTt ∈  must fulfil conditions: 
 

)TC(iTCT k
ti

k
tit ∅≠∩∃⇐∩=          (9) 

 

2. ATPG SYSTEM 

Purpose of automatic test pattern generator (ATPG) creation is verification of digital designs 
in Active-HDL system, which later will be implemented in Field Programmable Gate Array 
(FPGA), Complex Programmable Logic Device (CPLD), which are on one level with general 
matrix chips and signal processors now.  

ATPG system solves the following tasks: 

1. Test generation for FSM represented by transition graph. Representative languages are 
VHDL, Verilog. 

2. Test generation for digital designs projects represented by Boolean equations. 
Representative language is VHDL. 

3. Evaluation of test quality by single stuck-at- fault simulation. 

2.1. The structure of TESTBUILDER program 
The program is intended for automatic test generation with respect to single stuck-at faults of 
digital designs, which are described in language of Boolean equations. 

Program operations: 

1. Pseudo-random test generation in term of built-in binary code generators and decimal code 
generators.  

2. Deterministic binary test-vector generation, where the mentioned test-vectors activate 
single logical paths in circuit.  



3. Single stuck-at fault simulation [1] with purposes of evaluation of fault coverage of 
obtained test.   

4. Test formatting in standard of VHDL - Testbench. 

As an example of test building for circuit (Fig. 2) the following result is given: 
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Fig. 2. Example of digital circuit 

The program has processed: 

• 10 combinational circuits from list ISCAS’85;  

• 140 combinational and sequential circuits from PRUS; 45 sequential circuits with large 
complexity from PRUS;  

• 22 sequential circuits from list ITC’99; average time of deterministic test generation is 2 
hours.  

Average complexity of design is 1000 lines. Average time of pseudo-random test generation 
is 5 minutes. Test coverage is more than 90 %. 

CONCLUSIONS 

The proposed models and methods are realised in the form of program applications. The last 
ones are used for test generation of digital designs based on FPGA and CPLD. The class of 
evaluated structures is the FSM in the form of transition graph and Boolean equations with 
flip-flop circuit. Digital circuit description language is VHDL. Program applications are 
directed toward their use in CAD systems: Aldec, Xilinx. 
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Abstract Paper presents a proven methodology of development and productization 
of virtual electronic components. Methodology consists of rigorous approach to 
development of component specification, reverse engineering of behavior of 
reference circuits, application of industry-standard rules to coding of RTL model 
in a hardware description language and extensive testing and verification activities 
leading to (measured) high quality of hdl model and to FPGA prototype. In the 
final stage called productization a series of deliverables are produced to ensure 
effective reuse of the component in different (both FPGA and ASIC) target 
technologies.  
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1. OBJECTIVE AND MOTIVATION 
Objective of the effort described in this paper was to define a quality assurance policy for the 
development of the virtual components based on existing integrated circuits. At present our 
company specializes in cores compatible to 8-bit and 16-bit microcontrollers and 
microprocessors. Our methodology is based on the methodology recommended in [1], but it 
reflects to some extent peculiarities of our current profile as well as the fact that we have no 
access to certain EDA tools recommended in [1]. We found a lot of inspiration in the paper 
presented by SICAN company (now SCI-WORX) at the FDL’99 in Lyon [2]. 

The main motivation for the definition of a formalized methodology was to assure a high 
quality of the cores that we develop. Our first (bad) experiences in the development of a 



microcontroller core that was compatible to Intel 8051 chip [3] showed that lack of consistent 
and rigorous methodology results in a buggy core. Moreover, lack of a clear and complete 
specification turn the debugging of our first core into nightmare.  

2. OVERVIEW OF THE METHODOLOGY 

2.1. Design flow 
Basic development steps in the creation of a virtual component include: 

• Development of the macro specification, 
• Partitioning the macro into subblocks, 
• Development of a testing environment & test suite, 
• Design of subblocks, 
• Macro integration and final verification, 
• Prototyping the macro in FPGA, 
• Productization. 
 

We will discuss these stages one by one below focusing on details related to our experiences.  

2.2. Project management issues 
At the beginning of a new project all the steps enumerated above are refined into subtasks and 
scheduled. Human and material resources are allocated to the project. Usually several projects 
are being realized in parallel. Therefore people, equipment and software have to be shared 
among these projects. We use MS Project software to manage scheduling of tasks and 
allocation of resources. 

3. DEVELOPMENT OF THE MACRO SPECIFICATION  
We use the documentation of an original device as a basis for specification of the core 
modelled after it. However, the documentation provided by the chip manufacturer is oriented 
towards chip users and it usually does not contain all details of chip behavior that are 
necessary to recreate its full functionality. Therefore analysis of the original documentation 
results in a list of ambiguities that have to be resolved by testing the original chip. The overall 
testing program is usually very complex, but the first tests to be written and run on a hardware 
modeler (see point 5) are those that provide resolve ambiguities in documentation. 

At a later stage of specification we use an Excel spreadsheet to document all operations and 
data transfers that take place inside the chip. Spreadsheet columns represent time slots and 
rows represent communication channels. Such approach enables gradual refinement of 
scheduling of data transfers and operations up to the moment when clock cycle accuracy is 
reached. It reveals potential bottlenecks of the circuit architecture and makes easy to remove 
them at this early design stage.  

4. PARTITIONING INTO SUBBLOCKS 
Dataflow spreadsheet makes easier to define proper partitioning of the macro into subblocks. 
This first level of design hierarchy is needed to handle the complexity and to easier to divide 
design tasks between several designers. The crucial issue in this process is distribution of 
functions between the subblocks, definition of the structural interfaces and specification of 
timing dependencies between them. 



5. TESTING ENVIRONMENT AND PROCEDURES 

5.1. Testing the reference chip 
As a reference for our virtual components we use hardware models that run on a (second 
hand) CATS hardware modeler (Fig 1). The hardware modeler interfaces over network to the 
CADAT simulator. The environment of the chip is modeled in C. Test vectors supplied from 
a file may be used for providing stimuli necessary to model interaction of the modeled chip 
with external circuits (e.g. interrupt signals). 

An equivalent testing environment is developed in parallel as a VHDL testbench to be run on 
VHDL simulator. We use Aldec’s ActiveHDL simulator that proved to be very effective in 
model development and debugging phase. It enables us to import the testing results obtained 
with a hardware model into its waveform viewer in order to compare them against simulated 
behavior of the core under development. 

5.2. Test suite development 
Test suite development is based on the specification. Specification is analyzed and all the 
functional features of the core that should be tested against the original device are 
enumerated. Test development team (engineer) starts with development of tests that are 
needed to resolve ambiguities in available documentation of the chip to which a core has to be 
compliant.  

Most of the functional tests are actually short programs written in assembly language of the 
processor that is modeled. Each test exercises one or several instructions of the processor. For 
instructions supporting several addressing modes tests are developed to check all of them. 
After compiling a test routine the resulting object code is translated to formats that may be 
used to initialize models of program memory in the testbenches (both in CADAT and VHDL 
environments). We have developed a set of utility procedures that automate this process.  

In order to test processor interaction with its environment (i.e. I/O operations, handling of 
interrupts, counting of external events, response to reset signal) a testbench is equipped with 
stimuli generator. 

 
Fig. 1 CATS hardware modeler 
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5.3. Code coverage analysis 
The completeness of the test suite is checked with code coverage tool (VN-Cover from 
TransEDA). The tool introduces monitors into the simulation environment and gathers data 
during a simulation run. Then the user can check what percentage of code statements was 
actually executed. More sophisticated measures like branch or path coverage may be also 
determined.  

Incompleteness of the test suite may be a reason for leaving bugs in untested part of code [4]. 
Therefore we set a requirement to achieve 100% statement coverage during RTL simulation 
(i.e. each statement must be executed at least once during simulation of the complete test 
suite). Code coverage also helps to reveal redundancy of the test suite and sometimes the 
redundancy in the hardware design under test. 

TransEDA State Navigator tool complements VN-Cover with special tools for verifying finite 
state machines. It may extract fsm from the VHDL source and present it graphically as state 
diagram. It also analyzes the results of simulation and shows what edges of the state diagram 
were taken or whether particular sequence of edges was exercised. 

5.4. Automated testbench 
Our cores are functionally equivalent to the processors they are compliant to, but they are not 
always cycle accurate. Therefore a strategy for automated comparison of results obtained with 
hardware modeler to those obtained by simulating RTL model was developed.  

Scripts that control simulators may load the program memory with subsequent tests and save 
the simulation data into files. These files may serve as reference for post-synthesis and post-
layout simulation. The testbench that is used for these simulation runs contains a comparator 
that automatically compares simulator outputs to the reference values. 

6. SUBBLOCK DEVELOPMENT 
The main part of the macro development effort is the actual design of subblocks defined 
during specification phase. For the moment we have no access to tools that check the 
compliance of the code to a given set of rules and guidelines. We follow the design and 
coding rules defined in [1]. We check the code with VN-Check tool from TransEDA to ensure 
that the rules are followed. Violations  are documented. 

For certain subblocks we develop separate testbenches and tests. However, the degree to 
which module is tested separately depends on its interaction with surrounding subblocks. As 
we specialize in microprocessor core development it is generally easier to interpret the results 
of simulation of the complete core than to interpret the behavior of its control unit separated 
from other parts of the chip. The important aspect here is that we have access to the results of 
the test run on the hardware model that serve as reference. 
On the other hand certain subblocks like arithmetic-logic unit or peripherals (i.e. uarts and 
timers) are easy to test separately and are tested exhaustively before integration of the macro 
starts. 

Synthesis is realized with tools for FPGA design. We use Synplify, FPGA Express and 
Leonardo. We realize synthesis with each tool looking for the best possible results in area-
oriented and performance-oriented optimizations.  



7. MACRO INTEGRATION 
Once the subblocks are tested and synthesized they may be integrated. Then all the tests are 
run on the RTL model and the results are compared against the hardware model. As soon as 
the compliance is confirmed (which may require a few iterations back to subblock coding and 
running tests on integrated macro again) a macro is synthesized towards Xilinx and Altera 
chips and the tests are run again on the structural model. 

8. PROTOTYPING 
The next step in the core development process is building of a real prototype that could be 
used for testing and evaluation of the core.  

For the moment we target two technologies: Altera and Xilinx. Our cores are available to 
users of Altera and Xilinx FPGAs through AMPP and AllianceCORE programs. In the near 
future we are going to implement our cores in Actel technologies, too. Placing and routing of 
a core in a given FPGA technology is realized with vendor specific software. The tests are run 
again on the SDF-annotated structural model. We developed a series of adapter boards that 
interface FPGA prototype to a system in which a core may be tested or evaluated.  

The simplest way to test the FPGA prototype is to replace an original reference chip used in 
the hardware modeller with it. This makes possible to compare behavior of the prototype 
against the original chip. However for some types of tests even hardware modeller does not 
provide necessary speed. These tests can only be executed in prototype hardware system at 
full speed. Such approach is a must when one need to test a serial link with a vast amount of 
data transfers or to perform floating point computations for thousands of arguments. Our 
experience shows that even after an exhaustive testing program, some minor problems with 
the core remains undetected until it runs real-life application software. 

For this reason we have developed a universal evaluation board (Fig.2). It can be adapted to 
different processor cores by replacement of on-board programmable devices and EPROMs. 
An FPGA adapter board (see Fig. 1) containing the core plugs into this evaluation board. An 
application program may be uploaded to the on-board RAM memory over a serial link from 
PC. Development of this application program is done by a separate design team. This team 
plays actually a role of an internal beta site, that reveals problems in using the core before it is 
released to the first customer. 

Fig. 2 Processor core evaluation board 
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The FPGA adapter board may also be used to test the core in the application environment 
provided that a prototype system exists. Such system should contain a microcontroller or 
microprocessor that is to be replaced with our core in the integrated version of the system. 
The adapter board is designed in such a way that it may be plugged it into the microprocessor 
socket of the target system. Using this technique we made prototypes of our cores run into 
ZX Spectrum microcomputer (CZ80cpu core) and SEGA Video Game (C68000 core), in 
which they replaced original Zilog® and Motorola® processors. 

9. PRODUCTIZATION 
The main goal of productization phase is to define all deliverables that are necessary to make 
the use of the virtual component in the larger design easy. We develop simulation scripts for 
Modelsim simulator and we run all the tests with this simulator to make sure that the RTL 
model simulates correctly with it. As we target FPGA market an important issue in 
productization phase is to develop all the deliverables for firm cores required by Altera and 
Xilinx from their partners participating in AMPP and AllianceCore programs.  

Our foreign partners help us in developing synthesis scripts for Synopsys Design Compiler 
which we do not have access to. This deliverable is a must for customers targeting ASIC 
technologies. Synthesis scenarios for high performance and for minimal cost are developed. 

We use VHDL during core development we but we translate our cores into Verilog, to make 
them available to customers that only work with Verilog HDL. The RTL model is translated 
automatically while the testbench have to be developed in Verilog manually (the translation 
tool is not able to translate all VHDL constructs into Verilog).  

User documentation is also completed at this stage (an exhaustive, complete and updated 
specification is very helpful). 

10. EXPERIENCES 
The methodology described in this paper was defined over last few years during design of 
several versions of 8051-compatible microcontroller core [3].  

It was then successfully applied to development of several virtual components compatible to 
Microchip PIC® 1657 microcontroller, to Motorola MC68000 16-bit microprocessor, to Zilog 
Z80 8-bit microprocessor and its peripherals, to TI® 32C025 digital signal processor as well 
as to VCs that implement controllers of standard serial links (I2C, SDLC and USB).  

We continue to improve this methodology in order to turn it into a set of formal quality 
assurance procedures compliant to ISO 9000 requirements. 
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Abstract. The paper reports on some experiments with implementing positional 
digital image filters using field programmable devices. It demonstrates that a 
single field programmable device may be used to build such a filter. By using 
extensive pipelining in the design, the filter can achieve performance of 50 million 
pixels per second (using Xilinx XC4000E devices) and almost 90 MHz (in case of 
Virtex-2 devices. These results were obtained using automatic synthesis from 
VHDL descriptions, avoiding any direct manipulation in the design.  
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1. INTRODUCTION 

The paper reports on the implementation of a class of filters used in image processing. The 
filtering is realised on a running, fixed size window of pixel values. Positional filtering is 
obtained by arranging the values in an ordered sequence (according to their magnitude) and 
choosing one that is at a certain position (first, middle, last or any other). Thus, the class of 
filters encompasses median, max and min filtering, depending on the choice of this position. 

There are various algorithms used in positional filtering [7,10]. These are roughly classified to 
three groups: compare-and-multiplex [9], threshold decomposition [6] and bit-wise 
elimination [1,8,11]. All can be used with the currently available, powerful FPGA devices. 
Still, the bit-wise elimination methods seem most appropriate for the cell array organisation. 

Some specific positional filters have commercial VLSI implementations. There is no device 
that can be configured to realise any position filtering, though. Even if only median, min or 
max filtering is required it may be advantageous to use FPGA devices, as they offer greater 
versatility and ease of reengineering. Of course, FPGA implementations are particularly well 
suited for application in experimental image processing systems. 

First attempts to use FPGAs as reconfigurable image filters were reported almost as soon as 
the devices became available [2,3,5]. The devices proved to be too inefficient for full-fledged 
use forcing the designers to limit the window size, pixel rates or the width of their bit 



representations. This is no longer the case since the XC4000E family of devices became 
available [4]. 

Filter reconfiguration can be fully utilised only if there is an easy route to obtain new 
configuration variants. In case of FPGA implementation this is offered by auto-synthesis: new 
algorithms are described in terms of a hardware description language and the rest is done by 
the design tools with no human interaction. The results in the paper were obtained using the 
Xilinx Foundation tools with FPGA Express. 

2. BITWISE ELIMINATION METHOD 

Positional filtering is based on reordering of the pixel values according to their magnitude. 
Let’s denote the k-th value in the reordered sequence by k

nP  (where n is the length of the 
sequence). After reordering, only a single value at the specific position is of interest. In bit 
wise elimination, values that are certain not to be at this position are removed from the 
sequence. 

Values are compared bit-wise starting from the highest order bits. Lets assume that the r-1 
highest order bits have already been analysed by this method. Then, all the values that are left 
for consideration must have the high order r-1 bits equal to each other (and to the result under 
evaluation). Values that had these bits different were eliminated leaving only n’ values in the 
sequence. The position also has to be adjusted from initial k to k’ after eliminating values that 
were greater. The r-th bit of result is determined as P rn

k
'
' ( )  by ordering the corresponding bits 

of the reduced sequence and considering k’-position. All the values that differ on the r-th bit 
from P rn

k
'
' ( )  are eliminated and n’ is modified accordingly. If the eliminated values are greater 

than the quantile bit, then k’ is also modified.  

The algorithm ends when there is only one value left (or all the values left are equal to each 
other). 

The approach, with changing k and n is not well suited for circuit implementations. Instead of 
eliminating the values, it is more convenient to modify them in a way that is guaranteed not to 
change the result [2,8,11]. If one knows that a value is larger than the k-quantile, all its lower 
bits are set to 1. If one knows that it is smaller, the lower bits are set to 0. Thus, single bit 
voting may still be used and the values of k and n are fixed. This is the method used for the 
presented FPGA implementations. It can be formally described by the following iterative 
equations, where iterations start with the highest order bits (r=m-1) and end with the lowest 
(r=0): 
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where xi(r) is the r-th bit of i-th pixel in the filtering window, 
 P rn

k ( )  is the r-th bit of the value  at k-th position (k-quantile), 
 M ri ( )  and S ri ( )  are the modifying functions. 

Using the presented equations (1) a bit-slice processor may be implemented (Fig. 1). This is a 
combinatorial circuit that processes the single bits of the input pixels to produce a single bit of 
the result. The most important part of this bit-slice is the thresholding function corresponding 
to the last of equations (1). 

3. PIPELINED FILTER IMPLEMENTATIONS 

The simplest hardware implementation of the filter can be obtained by using m bit-slice 
processors with connected modifying function inputs and outputs. This would be a fully 
combinatorial implementation with very long delays, as the modifying functions have to 
propagate from the highest to the lowest order bits. 

Inserting pipelining registers between the bit-slice processors shortens the propagation paths 
[4]. The registers may be inserted either between every processor, as shown in Fig. 2, or only 
between some of them. Since this introduces latency between the bit evaluations, additional 
shift registers are needed on the inputs and outputs to ensure in-phase results. 
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Fig. 2. Pipeline filter architecture 
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Fig. 1. Bit-slice processor 



This architecture has very short propagation paths between registers and so it ensures highest 
pixel processing rates. There is latency between the input signals and the output equal to the 
number of bits in the pixel representations. Normally, in image processing applications this is 
not a problem. Just the image synchronisation signals need to be shifted correspondingly. It 
may be unacceptable, though, if image filtering is just a stage in a real-time control 
application. 

4. FPGA IMPLEMENTATION RESULTS 

The pipelined filter architecture was implemented for a filtering window of 3×3 pixels. The 
inputs of the filter were 3 pixel streams: one obtained by scanning the image and two delayed 
(by one and two horizontal scan periods). The consecutive horizontal window values were 
obtained by registering the input streams within the filter (to reduce the demand on 
input/output pads). 

All the presented results were obtained by implementing the filter that computed the median. 
This has no significant effect on the device performance or complexity, except that the min 
and max filters have much simpler thresholding functions. 

The filters were implemented using different size of pixel value representations (binary values 
of 4, 8 12 and 16 bits). In each case the smallest and fastest device that could contain the 
circuit was chosen for implementation. Table 1 contains the results of filter implementations 
using XC4000E family of devices, whereas Table 2 presents those for the Virtex-2 packages. 

Table 1. Filter implementations using XC4000E devices. 
Pixel representation Device Used CLB’s Pixel rate 

4 bits 4003EPC84-1 94 55.9 MHz 
8 bits 4008EPC84-1 288 50.1 MHz 

12 bits 4020EHQ208-1 645 50.6 MHz 
16 bits 4025EPG223-2 993 37.5  MHz 

Table 2. Filter implementations using Virtex-2 devices. 
Pixel representation Device Used slices Pixel rate 

4 bits 2V40FG256-4 99 88.8 MHz 
8 bits 2V40FG256-4 209 91.9 MHz 

12 bits 2V80FG256-4 345 88.7 MHz 
16 bits 2V80FG256-4 453 83.7 MHz 

 
The circuit complexity, expressed in terms of the number of cells used (CLB’s or Virtex 
slices), results from the number and complexity of bit-slice processors (complexity of the 
combinatorial logic) and from the number of registers used in pipelining. The first increases 
linearly with the size of pixel representation. On the other hand the number of registers used 
in pipelining increases with the square of this representation. In case of the XC4000 
architecture, the pixel representation of 8 bits is the limit, above which the complexity of 
circuit is determined solely by the pipelining registers (all the combinatorial logic fits in the 
lookup tables of cells used for pipelining). 

The synthesis tools had problems in attaining optimal solutions for the synthesis of 
thresholding functions in case of the cells implemented in XC4000 devices (this was not an 



issue in case of min and max positional filters). Most noticeably, the design obtained when the 
threshold function was described as a set of minterms required 314 CLB’s in case of 8-bit 
pixel representation. By using a VHDL description that defined the function as a network of 
interconnected 4-input blocks, the circuit complexity was reduced to the reported 288 cells. 
The reengineered threshold function had slight effect on the complexity of 12-bit filter and 
none on the 16-bit one. 

The most noticeable improvement in using the Virtex-2 devices for positional filter 
implementations was in the operation speed: approximately 50 MHz in case of the XC4000E 
devices and 80-90 MHz in case of Virtex-2. Some other architectural improvements are 
apparent, too. The increased functionality of Virtex slices led to much more effective 
implementations of pipelining registers: the FPGA Express synthesiser implemented them as 
shift registers instead of unbundled flip-flops, significantly reducing the slice usage. Improved 
lookup table functionality eliminated the problem of efficient decomposition of threshold 
function, too (at least in case of the 3×3 filtering window). 

5. CONCLUSIONS 

The presented implementation results show that FPGA devices have attained the speed grades 
that are more than adequate for implementing positional image filters of very high resolution. 
Furthermore, it is no longer necessary to interconnect multiple FPGA devices or limit the 
circuit complexity by reducing the pixel representations. In fact, the capabilities of Virtex-2 
devices exceed these requirements both in terms of performance and cell count. 

The proposed bit-wise elimination algorithm with pipelining is appropriate for the cell 
architecture of FPGA devices. The only problem is the latency, which may be too high in case 
of long pixel representations. By limiting the pipelining to groups of 2, 3 or more bit-slice 
processors it is possible to trade off latency against performance.  

Positional filtering is just a stage in complex image processing. The analysed filter implemen-
tations leave a lot of device resources unused. This is so, even though the cell utilisation for 
representations of 8 bits or more is between 60 and 97%. The cells are mostly used for 
registering and the lookup tables are free. These may well be used to implement further stages 
of image processing. 

It is very important that the considered implementations were directly obtained by synthesis 
from functional descriptions, expressed in VHDL language. This makes feasible the concept 
of reconfigurable filters, where the user describes the required filtering algorithms in a high-
level language and these are programmed into the filter. Still, the design tools have not 
reached the desirable degree of sophistication and reliability. This is especially true of the 
obscure template matching rules, peculiar to specific synthesis tools. Also, the correctness by 
design paradigm is not always met – some errors of improperly matched templates were 
detected only by testing the synthesised device.   
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Abstract. Using re-programmable logic components along with HDL languages 
encompasses wider and wider areas of practical applications, becoming  
a standard of complex digital system design. One of the basic tasks, which are to 
be carried out in the process of design, is obtaining the highest efficiency of the 
solution under design. Thereby designers are still looking for methods making it 
possible to speed up design processing time. Pipelining mechanism is one of these 
methods. It helps to speed up some dedicated operations. This paper contains an 
example of practical application of multiplier system of floating - point numbers 
described in VHDL language (model in the shape of a net - structure), while using 
operands described by the format compatible with the IEEE 754 standard of 
writing the floating - point numbers. In the early stage of design, a given unit 
described by high level language, is divided into some independent parts, which 
are synchronized with each other via intermediate registers and synchronization 
signal (pipelining mechanism). The main goal of this paper is to present practical 
aspects of designing an advanced and complex digital system while using 
pipelining mechanism in re-programmable logic structures with using VHDL 
language. 
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1. INTRODUCTION 
Digital units can be found in almost every domain of the surrounding world. Modern 
inventions like cellular telephony or digital television use digital signal processing for 
communications and couldn’t exist without such units. So it is very important to ensure 
effective and unfailing design methods. In the last years we can notice a rapid development of 
the design methods. For example: hardware description languages (HDL), logical synthesis or 
design implementation methods in, still improving, re-programmable devices such as FPGA, 
CPLD or ASIC. Now, the design path with HDL and with a high level logical synthesis is an 



industry standard. Advanced re-programmable units are larger and larger (in respect of gate 
number) so it enables the implementation of complicated digital units like SoC (System on 
chip), processors or specialized controllers. One of the important aspects of the design is its 
speed. 

The main, functional part of a computer and other electronic devices are arithmetic blocks. 
The operation of multiplication is one of the basic arithmetic operations possible to carry out 
by digital units. Practically, it is a partial product accumulation of operator A by the value of 
the next digit of the operator Xi with its weight [4]: 
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The scaled end result Pk = β k pk is equal to the value of multiplication A*X. 

In binary system, partial product may be the operator A or the value 0, so the multiplication 
algorithm can be realized by the add-and-shift method (Figure 1). 

 
Figure 1. Algorithm of accumulation multiplication in the natural binary system 

The main goal of this work is presenting a practical method of speeding up the operation of 
multiplication. The paper shows the example solution of a multiplication module. Operators 
used in the module are consistent with IEEE 754 floating-point number notation standard. The 
module includes a constant-number-multiplication module, which will be sped up. 

2. RULES OF USE OF PIPELINING MECHANISM 
Pipelining is a technique increasing the function speed of a design [6]. While pipeline 
implementation, the design is divided into individual pipelining levels, creating a line of 
matrix of elementary processing modules. Each matrix level may be modeled individually and 
independently. It allows choosing the optimal method of realization. In the case of sequential 
operation unit, when each stage is implemented in a different functional block of  
a design, other blocks remain idle. When individual parts of a unit are separated by latches 
(thus locking partial products), it becomes possible to process simultaneously each data 
stream. That is what pipelining is. In such a solution the results can be produced in each cycle 
of the synchronization signal, triggering given levels, not only once per several cycles.  
The frequency of producing results is limited by the delay time of the longest processing 



matrix level. Compared to combinational units, it is often possible to create the situation 
where the delay time of the whole unit (propagation time) is significantly larger than the 
period between the synchronization signals in the unit with implemented pipelining. 
Assuming that results of a unit with pipelining are produced with each cycle of the 
synchronization signal [4], it becomes possible to increase significantly the frequency of 
results produced, in comparison with combinational units. 

3. THE DESCRIPTION OF FUNCTIONAL ASSUMPTIONS 
The presented unit is an attempt of implementation of floating-point number multiplier, based 
on IEEE 754 binary standard numbering notation. Interface has been restricted to support only 
one mode of that standard. It is the simple mode with single precision, called real.  
A number written in that notation consists of three components (Figure 2): 

• sign: 1 bit; 
• exponent: 8 bits; 
• mantissa: 23 bits + one hidden bit used for normalization. 

 
Figure 2. The representation of the floating-point number in IEEE 754 notation 

The implementation was based on the floating-point–number-multiplication algorithm [7]. 
The first step is the operation of mantissa multiplication (23 bits + 1 hidden bit. For the next 
operation it is necessary to round the result to 24-bit number using only the top 24 bits of the 
48-bit result. After that this number should be normalized if overflow occurs on the hidden bit 
(the most important bit) by shifting the mantissa to the right along with the exponent value 
increment.  That is the outcome value of the mantissa. The exponent in IEEE 754 standard is 
represented in biased-127 code. The next step is the addition of exponents, which prior to that, 
are converted to the value in 2’s complementary code through adding the value of 127. After 
the addition, the result should be corrected by subtracting the value of 127.  
The overflow occurs when the value of the addition result is bigger than 127. In that case the 
exponent is set to the value of 128, and the mantissa is set to the 0 value. Underflow occurs 
when the value of the exponent addition is smaller than minus 126. In that case the exponent 
is set to the value of minus 127. The last step is to determine a sign value through XOR 
operation on the signs of operands. 

The suggested solution here is a structure of three modules [10]: 
• adder of exponents; 
• multiplier of mantissas; 
• and the main module, realizing all the necessary corrections and setting the sign of the 

result value. 
The main part of the entire unit is the multiplier module, which is used for realizing the 
operation of multiplication of two given operands. Different conceptions of realization of that 
module have been tested. After that it has been decided to present two solutions: 

• behavioral description, with using the multiplication function from standard library; 
• multiplication with using multiplying matrix, with implemented pipelining mechanism. 



4. PRESENTED DESIGN IMPLEMENTATION 
The design has been realized in the programming environment of Aldec’s Active-HDL 
(compilation & simulation code), and by using the program of Foundation 2.1i from Xilinx 
[2] (logic synthesis & hardware implementation). The whole design has been created in 
VHDL language [3, 8, 9]. Functionality has been checked during functional simulations and 
during timing simulations using the pseudo-hardware time delays of the target device. 

The realization has been divided into two modules. The realized adder module with the result 
correction in overflow case on the hidden bit position during mantissas multiplication and 
with the estimation of the outcome overflow of the exponent: 
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
--
entity a_der is
port (

INC_E : in STD_LOGIC;
EXP_A : in STD_LOGIC_VECTOR(7 downto 0);
EXP_B : in STD_LOGIC_VECTOR(7 downto 0);
OV : out STD_LOGIC;
EXP_Q : out STD_LOGIC_VECTOR(7 downto 0)
);

end a_der;
--
architecture ADDER_ARCH of adder is
-- -127 value for conversion
constant CONST : STD_LOGIC_VECTOR(7 downto 0) := "10000001";
-- temporary for overflow
signal TEMP_OV : STD_LOGIC;
-- temporary for underflow
signal TEMP_UN : STD_LOGIC;
-- result in 2's complement code
signal TEMP : STD_LOGIC_VECTOR(7 downto 0);
-- biased-127 result representation
signal TEMP_Q : STD_LOGIC_VECTOR(7 downto 0);
--
begin
--
TEMP <= EXP_A + EXP_B + INC_E; -- addition
TEMP_Q <= TEMP + CONST; -- conversion from

-- 2’s to biased-127
TEMP_OV <= TEMP(7) and E_A(7) and E_B(7); -- set if overflow occurs
TEMP_UN <= not (TEMP(7) or E_A(7) or E_B(7)); -- set if underflow occurs

E_Q <= (others => '1') when TEMP_OV='1'
else (others => '0') when TEMP_UN='1'
else TEMP_Q;

OV <= TEMP_OV;

end ADDER_ARCH; 

The main part of the design is a constant-number multiplication module. It ensures the 
realization of the multiplication operation of two 23-bit operands. In the overflow case 
multiplication results are set to 0 value. 

The main goal of that paper is to present the possibility of realization of fast multiplication 
module. Multiplication modules are usually the source of the longest delays in projected units. 
Two different solutions have been worked out: 

• functional description (operation based on standard library); 
• multiplication matrix with pipelining (description in the form of a structure) [5]. 



4.1. Functional description 
The description of the module has been based on the following construction: 

RESULTS <= MANTISSA_A * MANTISSA_B;

The ‘*’ operator is defined in IEEE standard library. The style of realization of this module is 
the same as, the formerly presented, adder module. 

4.2. Matrix multiplier with pipelining 
The whole operation has been divided into stages. The matrix of elementary adding modules 
has been defined. Each of them is a full 1-bit adder (FA) [10]. The operation of multiplication 
is carried out using 24-bit operands, so it is necessary to use the matrix of 23x23 adders + one 
last level of 23 adders for counting the end results of 24 top bits of the result. Each matrix 
level is composed of 23 adders counting independently introducing the delay equaled to the 
delay of one elementary module. So in that solution, the whole delay consists of all stages 
delays plus the addition of 23 adders of the last stage. The unit has been modified by 
introducing some more memorizing elements called flip-flops, to separate each matrix stage 
[10]. This pipelining allows for synchronized data flow between each matrix levels.  
This solution makes it possible that independent data is processed at different stages 
simultaneously. Data exchange between stages is realized during the active edge of the 
synchronizing signal. At the output of the unit we obtain results with every synchronizing 
signal cycle. Also, the input data should be fed into the unit while observing the synchronizing 
cycle. Synchronization signal period cycle must be bigger than the largest delay of unit stages 
of the given matrix. 

5. COMPARISON OF SPEED 
The final stage of realizing each of presented solutions was the unit implementation while 
using the FPGA re-programmable structure. During work, device from Xilinx’s families 
Virtex have been used. Table 1 presents the results of the implementation process and 
hardware time delay. 

Table 1. Comparison of results for the implementation of example multiplying units 
VIRTEX – V100PQ240 

 Behavioral Matrix  
(with pipelining) 

Maximal combinational delay [ns] 34.419 39.316

Maximal path delay [ns] 7.095 7.424

Maximal frequency [MHz] - 103.681

Minimal clock period time [ns] - 9.45

SLICE 320 1200

Combinational delay of the behavioral unit is 34 ns for Virtex. It is the time required for 
producing valid results by a module at the output on the basis of the input data. 

For synchronized matrix unit with implemented pipelining mechanism the most important 
parameter is the synchronization signal frequency. In the Virtex case it is equaled to 103.681 
MHz, so the cycle period time for synchronization signal is 9.45 ns. 



Synchronization signal period time determines the time between producing consecutive 
results. The main difference between presented solutions is the fact that for a behavioral unit 
the whole operation time is 34.419 ns. Matrix unit takes 39.316 ns, but this unit produced 
results after 9.45 ns. When the input data is fed between that times, the time of produced 
results is much better than in a behavioral unit. 

6. SUMMARY 
This paper presents a method that allows decreasing the period of time required for producing 
consecutive multiplication results. A practical example of floating-point number multiplier 
has been presented. It consists of the constant-number multiplier module for which the 
attempt of pipelining mechanism implementation has been presented. Two solutions have 
been worked out and implemented. The obtained results have been compared paying special 
attention to the processing speed (time between generated results) (Table 1). 

Combinational delay of behavioral unit is bigger than the minimal cycle period time of the 
synchronization signal in the matrix with a pipelining unit. Thanks to that it is possible to 
achieve the situation where the pipelining unit allows to produce results every 9.45 ns in 
comparison to 34.419 for a behavioral unit. That is a significant difference, in the aspect of 
obtaining consecutive unit results. The disadvantage of that solution is its size and more 
complicated description. A designer must ensure suitable synchronization of partial results 
and correct data flow between the unit stages. 

The application of the presented proposal concerns the sequential processing structures, where 
the most important thing is data processing time and size of system is not the main concern. 
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Abstract. In the paper a high-speed realization of converter from a  
residue-to- binary and binary-to-residue form for the three-modules residue 
number system (RNS) is proposed. The bases {B1, B2, B3} for separate modules are 
respectively {2n–1, 2n, 2n+1}. In opposite to well-know converters, the proposed 
method is based on bits grouping algorithm, which is different from the Chinese 
Residue Theory (CRT). Using the method of grouping bits causes a regular 
structure of the converter. There is possible dynamical changing of RNS range in 
FPGA structures and realization of stream processing. 
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1. INTRODUCTION 
Residue Number System (RNS) in arithmetical operation causes division of huge argument 
into a vector of smaller values [8]. Operations, such as addition, subtraction and 
multiplication, in RNS are executed independently from components of a residue vector. 
Cary-free nature of Residue Number System makes it attractive for implementation of a high-
performance digital signal processing (DSP) systems [6]. RNS has bean found perfectly 
suiting for high-speed computation involving high precision, when arithmetic operations are 
predominant of which DSP hardware such as convolvers, digital filters and FFT processing 
are perfect examples[4][5]. The three-moduli RNS {2n-1, 2n, 2n+1} is of special interest 
because several operations in this system can be performed efficiently with limited amount or 
even without ROM. The periodicity properties exhibited by the three-moduli RNS result in 
superb performance of the binary-to-residue (B-to-R) converter and modulo addition even for 
large n. On the other hand, a residue-to-binary (R-to-B) converter should be realized in 
similar, short time [1,9]. 

2. PROCESSING USING RESIDUE NUMBER SYSTEM 
RNS [5][2][8] is defined by a set of r positive integers {B1, B2, …, Br}, which are pair-wise, 
relatively prime, i.e. for any pair of module Bi, Bj, i≠j. The dynamic range W of the RNS with 
r moduli, i.e. the number of different integers that can be uniquely represented in the RNS, is 



given by =W Пi Bi,  i=1,2…r. In RNS a numerical value of a natural number X in the range 
[0, W-1] is represented by an r-tuple {X1,X2,…, Xr}, whose components are the residues of X 
with respect to an ordered set of module Bi, i.e.: 

Xi=X mod Bi=XBi   

In RNS the operations of addition, subtraction, and multiplication are performed 
simultaneously upon their residues: 

(X1,X2,…,Xr)⊕(Y1,Y2,…,Yr)=(Z1,Z2,,.,Zr)  

where Zi=|Xi ⊕ Yi|Bi, 1≤ i ≤ r. Thus, the carry propagation delay becomes dependent on the 
size bi= log2  Bi of a single module Bi only. In most RNS-based applications, computation 
process is ended by R-to-B conversion, because other system elements use conventional 
positional binary system. Fig. 1 presents a general schema of the computation process in 
RNS. There are operation block and two converters blocks (marked by area 1). 

 

Z  ( z 1 , z 2 , . . . , z m )  

Z r =  X r  ⊕⊕⊕⊕  Y r  B r

R - t o - B  ⇒  F ( { Z 1 , Z 2 , . . , Z r } )  

Z 2 =  X 2  ⊕⊕⊕⊕  Y 2  B 2Z 1 = X 1  ⊕⊕⊕⊕  Y 1  B 1

B - t o - R ⇒ Y i =  Y  B i

X  { x 1 , x 2 , . . , x n }

L e g e n d :  
A r e a  1  

A r e a  2  

…

Y  { y 1 , y 2 , . . , y n }

 
Fig. 1. General scheme of sequential computation in RNS 

Using RNS there is exchanged n-bits value arguments into few smaller ki-bit values, where 
ki<n and 1≤ i ≤ r. Both numbers k and r (quantity of parallel channels) are depended on a 
method of construction RNS. Shorting of computation (area 2 in Fig. 1) time can be obtained 
by decreasing of bits number in separated channels. Increasing of number of moduli causes 
growing up complexity of R-to-B and B-to-R converters. Choice of moduli for building of 
RNS, in order to meet big parallelisms, faster conversion and unique representation in all 
range =W Пi Bi for i=1,2…r is non-trivial problem [2,5].  

2.1. “Bit grouping” method in realization of converters 
There are many methods for choice of RNS moduli [8]. One of the most used is the method, 
where moduli are based on power 2, in the form 2k-1 and 2k+1. Calculation of residues relies 
on addition or subtractions of k-bit groups obtained from original n-bit binary representation 
(independent at amount position W{wn-1,… w1, w0}). Interpreting of B-based k-bit groups of a 
number W{wn-1, …, w1, w0}, together with their weight, as digits of base-constant system Bk , 
there is easily converted this number into a vector {Ws-1,…., W1, W0} in the Bk-based number 
system.  
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Basing on this “bit grouping” method, and properties of modulo operation presented in [1], 
residues for moduli Bk-1 and Bk+1 can be calculated without division, and can be reduced to 
addition and subtraction related bit groups, in accordance with the following rules: 
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If the value Wi is equal to Bk-1, then Wi is omitted. Similar situation is in equation: 
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where Wi is omitted, if Wi is equal to Bk+1. 

Several authors implement effective B-to-R converters without ROM by using adders only. 
Very often used method of RNS building is based on three-moduli in the form: 

B1=2k-1,  B2= 2k, B3= 2k+1 

W=B1*B2*B3=2n-2k is the RNS domain, and range is of [0÷W-1]. The method of a residue 
computation up to help pattern 3 for binary 12-bit representation of argument A is shown in 
Fig. 2. 

 
 

r B 1  = W  B 1  
r B 2  = W  B 2  
r B 3  = W  B 3  

      fo r  a = { 0 , 1 }  a n d  i= 0 ÷ 1 1   
a 1 1 ,a 1 0 ,a 9 ,a 8 ,a 7 ,a 6 ,a 5 ,a 4 ,a 3 ,a 2 ,a 1 ,a 0         

(1 )

 

 

r B 1  = W 0 + W 1 + W 2 B 1  
           (2 )

r B 2  =  W 0  
r B 3  = W 0  -W 1 + W 2 B 3             

(3 )
 

W = ∑∑∑∑  a i2 i  

W 2  W 1 W 0

 
Fig. 2. Example of bit grouping for residue computation purpose 

Basing on scheme shown in Fig. 2, its possible building efficiency less ROM circuits 
realization of residue-to-binary and binary-to-residue conversion. 

2.2. Binary to residue conversion (B-2-R)  
Based at Bit grouping method from Fig. 2 is possible realized (W0-W1+W2) in regular 

structure combinational block [3] near-full adder (Cary Save Adder, CSA). For this circuits 



(CSA) the residue generation process for the most time consumption channel with modulus 
2n+1 is performed at similar addition of two arguments at time. Taking advantage of 
additional modulo operations is possible by constructing efficient residue generator. Follow-
up results at order position and chose equivalently proper value is realized by residue-to-
binary conversion. This method is shown at Fig. 3. Analogical but in shorter time it is possible 
to realize a residue generator for moduli 2n-1. In order to evaluate residue for moduli 2n it is 
sufficient to copy k bit from the original value. 

  

Legend 
A=(W 0-W 1+W 2) 

 B=(W 0-W 1+W 2)-1 
 C=(W 0-W 1+W 2)+1 
 Z sign „0” on k  bit position 

   A 

k+1
k+2   B   C  

W 2 W 1 W 0 

rB 3 for 2k+1

 0  1  3 1

 0

Z 

 
Fig. 3 Scheme determine residue for 2n+1 moduli. 

Increasing or decreasing range residue generator is performed by copy adequate amount of 
combinational blocks. Is obtaining a regular structure of combinational block is important in 
this B-2-R method. Also is important for stream processing is obtaining similar time 
conversion and addition in 2n+1 moduli channel. 

2.3. Residue-to-binary conversion (R-2-B) 
Knowing values rB1, rB2, rB3 show Fig. 2 it’s possible to compose a system of equations 

for computation of W0, W1, W2 Calculation and combining of W2&W1&W0 is a binary 
representation of a finding number W.  

 r B 3  W 0 = r B 2 r B 1  

 W 2 -W 1  B 3  W 2 + W 1  B 1

W 2  

W 1  

R u le
1 ,2 ,3

W = >  W 2 & W 1 & W 0

 
Fig. 4 Scheme sequential realization a residue-to-binary conversion. 



Sequential model of R-2-B conversion is based at bit grouping method demonstrated in [9] 
with additional rule property modulo operations show at Fig. 4: 

0 ≤ (W1+W2) ≤ 2(B-1)-1    (rule 1) 

W1+W2 ≥ W1-W2     (rule 2) 
[(W1+W2)+(W1-W2)] condition of parity  (rule 3) 

3. STREAM PROCESSING STRUCTURE 
Using presented sequential conversion model, time of sequential stage is similar to the 

time of operation in the most time-consuming channel 2n+1 moduli. This method makes 
possible implementation of pipeline for increasing productivity [10]. For stream processing 
important time specified stage and number steps to make calculation of a first value. Based at 
this method the first result is obtained after five steps, and is time step proportional to 
operation time at n/3 bit position. To estimate minimal value operations in series below is 
used the equation: 

 
mTn=TB-2-R+(m+1)Tk+TR-2-B     (4) 

where: 
 m - value operations 
 TB-2-R - time B-2-R conversion 
 TB-2-R - time R-2-B conversion 
 Tn - time askew n position carry propagation (look-ahead propagation) 
 Tk - time askew n/3 position carry propagation 
substitution this value to equations (4) is 

2
12

6
15

2
3

3
5

3
2
3
5

3
11

1
3
1

3
1

22 ==∗==
−

++
=

−
++

= −−−−

kn

BRkRB

TT
TTTm  

4. CONCLUSIONS 
In the paper a new method of serial realization of basically arithmetical operations using 
residue number system (RNS) is present. RNS consists of three values, and use moduli in 
form of {2n-1, 2n, 2n+1}. This method, unlike others known [1][7], based directly on bit 
grouping algorithm. Because of the fact that realization time of arithmetic operation is 
proportional to number of bits in arguments, using of Residue Number Systems makes 
possible increasing of performance of serial arithmetic operations. It is obtained through 
parallel calculation on less-bits arguments that represent together the whole input data. In 
addition, the regular structures of the converter are easily implemented in FPGA circuits. 
Using many-context FPGAs, especially FPSLIC [11], there are possible changes of RNS 
range at run time. For such RNS representation, a time of B-to-R conversion and of simple 
arithmetical operation, are comparable, and are proportional to value k. The presented 
approach and the sequential method of RNS computation give opportunity to compute with a 
dynamic range in pipeline. In this approach time-profit is obtain for three operations train. 
Profit is independent at bit positions arguments and increasing with growth number of 
operations. 
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Abstract. Circuit realization in one PLA may be unacceptable because of the large 
number of terms in SOP, therefore a problem of block synthesis is considered in 
this paper. This problem is to realize a multi-level form of Boolean function system 
by some blocks, where each block is PLA of smaller size. A problem of block 
synthesis in gate array library basis is discussed in this paper too. The results of 
experimental research of influence of previous partitioning of Boolean function 
systems on circuit complexity in PLA and gate array library basis are represented 
in this paper.  
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1. INTRODUCTION 
There are different ways of implementation of the control logic of custom digital VLSI 
circuits. The most important ways are the realization of two-level AND/OR circuits in 
Programmable Logic Arrays (PLA) basis [9] and the realization of multi-level circuits in 
library gates basis [7]. Each of them has its advantage and disadvantage. The advantage of 
PLA-circuits is simplicity of layout design, testing and modification, because circuits are 
regular. There are effective methods and programs of the PLA-area minimization [9,4]. The 
disadvantage of two-level PLA-circuit is the large chip area compared with the area required 
for multi-level library gates circuit. But the synthesis of a multi-level circuit is a very difficult 
task [5], moreover, such circuits are harder for testing and topological design than PLA-
circuits. The implementation of a circuit in one PLA may be unacceptable because of the 
large size of the PLA. Therefore a problem of block synthesis is considered in this paper. The 
problem is to realize a multi-level form of Boolean functions system by some blocks, every of 
which being a PLA of smaller size. The problem of block synthesis in the library gates (LG) 
basis is considered in this paper too. The results of experimental research of influence of 
preliminary partitioning of Boolean function systems on circuits complexity in the PLA and 
LG basis are given. 



2. REPRESENTATION OF BOOLEAN FUNCTIONS AND THE BASIS OF 
SYNTHESIS 

It is well known, that the formal (mathematical) model of functioning of multi-output 
combinational circuit is a system of completely defined Boolean functions [9]. Let a 
combinational circuit have n inputs and m outputs. One of the forms of Boolean function 
system representation is the sum-of-product (SOP) system. Let us denote by Df(n,k,m) the 
system of Boolean functions f(x)=(f1(x),…,fm(x)), x=(x1,...,xn), specified on k common 
elementary products of Boolean variables x1,...,xn. Let us represent Df(n,k,m) by a pair of 
matrices – the ternary k×n matrix T x and the Boolean k×m matrix B f. A pair of the 
appropriate rows of T x and B f represents accordingly the product and the subset of the 
functions it belongs to their SOPs. The representation of a system of Boolean functions in the 
form of SOP system will be called two-level representation. We refer to specification of a 
system of Boolean functions in the form of a system of parenthesised algebraic expression in 
the basis of logic AND, OR, NOT operators as the multi-level representation.  

A programmable logic array is a classical two-level structure for realization of SOP-system of 
Boolean functions. A system of SOP Df(n,k,m) can be realized on PLA(n,m,k), which has not 
less than n input pins, m output pins and k intermediate lines. Elementary products are 
realized on intermediate lines of matrix AND of PLA, sum-of-products are realized in matrix 
OR of PLA. The PLA structure is adequate to the system of SOPs Df(n,k,m). The 
commutation points between input pins and intermediate lines in AND matrix correspond to 
fixed (0,1) elements of T x, the commutation points between output pins and intermediate 
lines in OR matrix correspond to elements 1 of B f.  
The library gates used as basis elements for synthesis of combinational logic circuits are the 
elements from the logic gate library К1574 [3]. Each element of such a library is 
characterized by the number of basis gates needed for its location in the chip. There are 
various elements in the gate library K1574: inverters, multiplexers, buffer elements, gates 
AND, OR, NAND, NOR, XOR etc.  

3. ALGORITHM FOR PARTITIONING MULTI-LEVEL REPRESENTATION OF A 
SYSTEM OF BOOLEAN FUNCTIONS  

Let us consider the multi-level algebraic form of a Boolean function system in AND/OR/NOT 
basis. Each intermediate or output function is given by a separate SOP. Let non-overlapping 
SOP subsets R1,…,Rh form a partition of SOP set D={D1,…,Dm}. R1,…,Rh are the blocks of 
the partition with the following parameters: ni is the number of input variables, mi is the 
number of output variables, ki is the number of products in two-level form of SOP of 
functions of the block. 

Let the restrictions (n*, m*, k*) on block complexity be given: n* is the maximal number of 
input variables, m* is the maximal number of output variables, k* is the maximal number of 
products in two-level representation of SOP of functions of the block. 

Transformation of multi-level representation to two-level one and determination of the 
parameter ki is connected with solving problems of intermediate variables elimination [6] and 
joint minimization of a system of Boolean functions in SOP form [4, 5, 9]. 

The problem of partitioning multi-level representation of a system of Boolean functions is to 
find a partition R1,…,Rh which fulfils (n*, m*, k*)-restriction and has a minimum number of 
blocks h. 



The main idea of the technique for solving this problem consists in the following. The blocks 
(or SOP subsystems) are building up step-by-step. A SOP with the maximal number of 
external variables is chosen out as starting for formation of the next subsystem. Then, SOPs 
that are most closely connected to this subsystem (on common variables) are added to this 
subsystem, the elimination of intermediate variables and joint minimization of functions in 
SOP subsystem are performed. The resulting subsystem is checked for the fulfilment of (n*, 
m*, k*)-restriction. If (n*, m*, k*)-restriction isn’t violated, then the next SOP is added to this 
subsystem, otherwise the constructing the next subsystem begins. As a result, each SOP is in 
one of the subsystems. This algorithm was described in detail in [2].  

4. BLOCK METHOD FOR SYNTHESIS IN PLA BASIS 
The block method for synthesis in PLA basis has two procedures. The first procedure is the 
partitioning multi-level representation of the system of Boolean functions into blocks with 
(n*, m*, k*)-restricted parameters. The second procedure is realization of each block by one 
PLA. 

Let the area of a circuit consisting of some (possibly interconnected) PLAs be equal to the 
sum of the areas of these PLAs. The conditional area of one PLA(n,m,k), evaluated in 
conditional units (bits), is determined by the formula 

log
PLAS  = (2n + m)k (bit). (1)  

At the level of particular layout used in silicon compiler SCAS [1], the real PLA area is 
determined by the formula 

top
PLAS = OR,ANDS + BNDS ,   (2)  

where OR,ANDS  is the area of information matrixes AND, OR  determined by the formula 
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BNDS  is the area of PLA-boundary (load transistors, buffers etc.), determined by the formula 
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The value of top
PLAS  determined by formulas (3), (4) is the number of real layout cells that the 

PLA layout is composed of [1].  

5. BLOCK METHOD FOR SYNTHESIS IN THE GATE ARRAY LIBRARY BASIS 
The block method for synthesis in gate array library basis has two procedures. The first 
procedure is the partitioning of multi-level representation of the system of Boolean functions 
into blocks with (n*, m*, k*)-restricted parameters. The second procedure is realization of 
technology mapping each block into the logic gate library. This procedure includes synthesis 
in the gate array library using a basic method “Cover”.  

The basic method “Cover” is a process of covering Boolean expressions in AND/OR/NOT 
basis by elements from the gate library. Previously each multi-place AND(OR) operator of 
the system is replaced by superposition of two-place AND(OR) operators, respectively. Then 
the Boolean network is building for each expression, where each node corresponds to two-
place operator AND(OR) or one-place operator NOT. The problem of covering Boolean 
network is to find subnetworks in it, which are functionally equivalent to library elements. 
The basic method “Cover” was described in detail in [3]. It is experimentally confirmed to be 
better than the method represented in [7].  



6. EXPERIMENTAL INVESTIGATION OF BLOCK METHODS FOR SYNTHESIS 
IN PLA AND GATE ARRAY LIBRARY BASISES 

The block methods for synthesis were realized in computer programs and investigated 
experimentally. The experiments were done on a series of combinational circuits from well-
known MCNC benchmark set chosen from design practice. The programs run on PC Celeron 
600, RAM 64 Mb.  

Experiment 1. Two realizations of multi-level representation in PLAs were compared: the 
first one is realization in one PLA; the second one is realization in several PLAs, obtained by 
partition algorithm. Table 1 shows the results of Experiment 1.  

Table 1. The comparison of two realizations of multi-level representation for PLAs: the first is 
realization in one PLA; the second is realization in several PLAs, obtained by partition algorithm. 

One PLA PLA net 
Circuit name n m k log

PLAS  top
PLAS  n*, m*, k* h ∑

log
PLAS  ∑

top
PLAS  

x1 51 35 274 37538 26715,29 40,20,500 3 24521 21982,5 
Apex6 132 94 432 154656 99092,84 100,70,900 3 104864 73608,43 
      105,80,900 2 113252 79032,04 
      70,40,900 4 75872 60442,43 
Apex7 49 35 213 28329 20680,35 30,30,500 3 17104 16603,77 
      35,30,500 2 18666 16008,26 
      25,20,500 4 8825 10526,71 
example2 85 63 161 37513 28394,06 40,30,900 4 19501 20406,34 
      60,40,900 2 23450 20429,21 
      55,35,900 2 21227 19194,59 
X4 94 71 371 95347 63474,61 60,35,900 4 40638 35639,54 
      66,50,900 3 46910 46237,44 
Frg2 143 139 3090 1313250 794310,4 50,30,500 11 171581 166857,8 
Too_large 38 3 1021 80659 52539,5 50,2,900 4 102170 73014,45 
Ttt2 24 21 222 15318 11824,2 24,10,900 3 10773 13958,77 
      24,8,900 5 8092 9907,832 
Cm150a 21 1 796 34228 26343,73 16,2,500 3 6155 6422,373 
      18,3,500 2 11623 14899,51 
Frg1 28 3 119 7021 5904,407 26,1,100 3 5783 6441,453 
      28,2,100 2 6523 8530,519 
Lal 26 19 117 8307 6994,927 30,16,100 5 4574 8248,276 
Add8 17 9 2519 108317 81949,77 12,9,900 2 9324 9184,462 
X3 135 99 915 337635 209646,7 80,50,900 5 170755 122437,9 
Term1 34 10 818 63804 42979,46 30,8,500 2 49896 56050,37 
      34,4,500 3 36750 27895,76 
      20,8,500 8 21327 23514,69 
Mux 21 1 425 18275 14706,1 16,10,100 2 1862 3025,974 
      12,6,100 3 1519 3270,493 
count 35 16 89 7654 7091,571 25,8,100 4 2769 5072,029 
      18,6,100 6 4851 5606,067 

 



Experiment 2. Three realizations of multi-level representation in the basis of logic gate 
library were compared: the basis method “Cover”, combining method and block method of 
synthesis. The combining method is composed of two steps. The first step is transformation of 
multi-level representation into two-level representation. The second step is synthesis by basis 
method “Cover”. Table 2 shows the results of Experiment 2. 

Table 2. Comparison of basis method, combining method and block realization of multi-level 
representation 

Basis method  Combining method Block realization Circuit name n m L S k L S h L S 
cu 14 11 41 204 35 76 397 4 41 219 
comp 32 3 110 555 3 12 70 2 23 123 
cmb 16 4 27 142 56 116 630 3 38 212 
cm162a 14 5 43 198 20 57 290 2 24 117 
mux 21 1 61 319 425 1032 6094 5 61 327 
count 35 16 111 506 89 188 1024 13 76 356 
frg1 28 3 298 1683 119 298 1683 3 298 1683 
cm138a 6 8 9 53 6 16 88 3 9 53 
cm82a 5 3 20 90 11 14 74 3 13 57 
9symml 9 1 154 738 30 70 359 5 141 727 
lal 26 19 117 576 117 207 1141 3 180 849 
unreg 36 16 96 432 49 80 384 2 80 384 
z4ml 7 4 102 554 19 26 140 2 102 554 
x3 135 99 933 4475 915 1948 10808 4 966 4679 
pcle 19 9 39 181 16 40 214 5 36 173 
term1 34 10 495 2407 818 2414 13403 7 465 2360 
cm150a 21 1 61 261 796 2136 11886 4 65 309 
too_larg 38 3 5217 30145 1027 5273 30473 4 4915 28392 
ttt2 24 21 299 1609 222 561 2937 5 225 1197 
sct 19 15 120 584 64 124 618 6 127 583 
c8 28 18 159 798 70 92 464 4 92 452 
frg2 143 139 1315 6560 3090 15385 85093 15 1361 6886 
cm42a 4 10 13 65 4 20 94 3 14 72 

 

The minimization of two-level representations of Boolean function system in partition 
algorithm was done by the program of joint minimization in SOP [8]. The basis method 
“Cover” uses the computer program from [3].  

The notation in tables 1, 2 is as follows:  
 n – the number of arguments of realized Boolean function system (the number of input 
pins in the circuit);  
 m - the number of functions in the system (the number of output pins in the circuit);  
 k - the number of products in the SOP system (two-level representation);  
 log

PLAS  - the conditional area of one PLA(n,m,k), evaluated in conditional units (bits) by 
the formula (1);  
 ∑

log
PLAS  - the sum of conditional areas of PLAs, found by the block synthesis method;  

 top
PLAS  - the real area of one PLA(n,m,k), evaluated by the formula (2);  

 ∑
top
PLAS - the sum of real areas of PLAs, found by the block synthesis method;  

 S – the circuit complexity in library gates basis (the total number of gates, required for 
logical elements, i.e. area for elements);  
 L – the number of logical elements in a circuit;  
 n* – partition parameter (the number of arguments of a block);  



 m* – partition parameter (the number of functions in a block);  
 k* – partition parameter (the number of products in a block);  
 h – the number of blocks in the partition of multi-level representation of Boolean 
functions system.  

According to the results of the experiment the following conclusions can be stated. 

1. The block method for synthesis of multi-level representation by a PLA net is more 
preferable, than one PLA realization. The gain for area is obtained in 13 circuits from 16. 
The circuits with the smallest area are printed in bold type (see table 1). Only 
macroelement area was taken into account in this experiment, and the bound area was not. 
Thus the final conclusion about replacement of one PLA with PLA net can be done after 
layout design. Using formula (2) for area calculation is more preferable, than (1). For 
example, area calculation for Frg1, Lal with (1) gives advantage, but the real PLA net area 
is more then the one PLA area. 

2. The block realization is more preferable for synthesis in logic gate library too. The better 
(minimum) valuations of circuit complexity are printed in bold type (see table 2). The 
ttransformation multi-level representation into two-level representation (combining 
method) is advisable in only three examples; it is not competitive with the basis method 
“Cover” and the block method. 
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Abstract. The paper describes the challenges of modeling embedded hybrid control 
systems at a higher abstraction level. It discusses the problems of modeling such 
systems and suggests the use of hybrid Petri nets. Modeling an exemplary 
embedded control system with a special hybrid Petri net class using an object-
oriented modeling and simulation tool shows the potential of hybrid Petri nets. 
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1. INTRODUCTION 
The design of complex embedded systems makes high demands on the design process due to 
the strong combination of hardware and software components. These demands rise rapidly, if 
the system includes components of different time and signal concepts. That means there are 
systems including both event parts and continuous parts. Such systems are called 
heterogeneous or hybrid systems. 

The behavior of such hybrid systems cannot be covered homogeneously by the well-known 
specification formalisms of the different hardware or software parts because of the special 
adaptation of these methods to their respective field of application and the different time and 
signal concepts the several components are described with. A continuous time model usually 
describes continuous components, whereas digital components are described by discrete 
events. 
For describing both kinds of behavior in its interaction, there are different approaches to 
describe such systems. On the one hand, the different components can be described by their 
special formalisms. On the other hand, homogeneous description formalism can be used to 
model the complete system with its different time and signal concepts, and that is what we are 
in favor of. 

Therefore, we have investigated modeling methods that can describe the behavior of such 
systems homogeneously at a high abstraction level independently from their physical or 
technical details. Apart from considering the heterogeneity, the modeling method must cope 
with the high complexity of the modeled system. This demand requires support for 
modularization and partitioning, and capabilities for hierarchical structuring. 



In the following, a graph based formal modeling approach is presented. It is based on a 
special Petri net class, which has extended capabilities for modeling of hybrid systems. To 
model the hybrid systems, we have used an object-oriented modeling and simulation tool 
based on this Petri net class. This tool can be used for modeling hybrid systems from an 
object-oriented point of view. It can be used for modeling and simulating components or 
subsystems and offers capabilities for hierarchical structuring. 

2. HYBRID PETRI NETS 
The theory of Petri nets has its origin in C.A. Petri’s dissertation “Communication with 
Automata“ [1], submitted in 1962. Petri nets are used as describing formalism in a wide range 
of application fields. They offer formal graphical description possibilities for modeling 
systems consisting of concurrent processes. Petri nets extend the automata theory by aspects 
like concurrency and synchronization. 

A method to describe embedded hybrid systems homogeneously is the use of hybrid Petri 
nets [2]. They originate from continuous Petri nets introduced by David and Alla [3]. A basic 
difference between continuous and ordinary Petri nets is the interpretation of the token value. 
A token is not an individual anymore, but a real quantity of token fragments. The transition 
moves the token fragments from the pre-place to the post-place with a certain velocity of 
flow. The essence of hybrid Petri nets is the combination of continuous and discrete net 
elements in order to model hybrid systems. 

In the past, there were applications of hybrid Petri nets described in many cases but 
essentially, they were concentrated on the fields of process control and automation. In the 
following we demonstrate the possibilities of using hybrid Petri nets to model embedded 
hybrid systems. The used Petri net class of Hybrid Dynamic Nets (HDN) and its object-
oriented extension is described in [4] and [5]. This class is derived from the above-mentioned 
approach of David and Alla and defines the firing speed as function of the marking from the 
continuous net places. 

Components or subsystems are modeled separately and abstracted into classes. Classes are 
templates, which describe the general properties of objects. They are grouped into class 
libraries. Classes can be used to create objects, which are called instances of these classes. If 
an object is created by a class, it inherits all attributes and operations defined in this class. 

One of the important advantages in this concept is the ability to describe a larger system by 
decomposition into interacting objects. Because of the properties of objects, the modification 
of the system model could by achieved easier. The object-oriented concept unites the 
advantages of the modules and hierarchies and adds useful concepts like reuse and 
encapsulation. 

3. MODELING AN EMBEDDED CONTROL SYSTEM 
The application example we have chosen to discover the possibilities of using hybrid Petri 
nets for modeling of embedded hybrid control systems is an integrated multi-coordinate drive 
[6]. This is a complex mechatronic system including a so-called multi-coordinate measuring 
system. 

Fig. 1 shows this incremental, incident light measuring system consisting of three scanning 
units fixed in the stator and a cross-grid measure integrated into the stage. The two y-systems 
allow determining the angle of rotation ν. The current x, y1 and y2 position is determined by 
the cycle detection of its corresponding sine and cosine signals. The full cycle counter keeps 
track of completed periods of the incremental measuring system. This is a precondition for the 



following deep interpolation. The cycle counter of these signals is a function of the grid 
constant and the shift between the scanning grids and the measure. The cycle counter provides 
a discrete position, and in many cases, this precision is sufficient for the motive control 
algorithm. To support a very precise position control with :m or nm resolution, it must be 
decided, which possibility of increasing the measure precision is the most cost-efficient. 
There is a limit of improving the optic and mechanical properties because of the minimum 
distances in the grid. 

 

y1 -system 

Y 
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X 
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y2 -system x-system

measure with cross grid scanning grids 

transmitters 
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Fig. 1 Multi-coordinate measuring system 

Alternatively, an interpolation within a signal period can be used, whereby the sampling rate 
of the A/D-Converter is increased, which would allow a more detailed evaluation of the 
continuous signals of the receiver. The problem to be solved in this application example leads 
to in modeling and simulating the measure system together with the evaluation algorithm for 
the position detection. 

 

The measuring system is 
hierarchically modeled using 
components (Fig. 2). 

Components with the same 
functionalities are abstracted 
into classes, put into a class 
library, and instantiated while 
modeling. The modeling of a 
multi-hierarchical system is 
possible as well. 

Fig. 2 The principle of hierarchical modeling 

3.1. System environment 
The component “Signal generation“ (Fig. 3) simulates the sensor data and provides the sine 
and cosine signals as well as a position value. For clearness reasons this net is saved as a 
component into a subnet and gets the input places “Forward”, “Stop”, and “Backward”. It 
provides a sine and a cosine signal and additionally a position signal as a comparative value 
for a later error control function. 
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Fig. 3 Component “Signal generation” 

 

To simulate a potential 
misbehavior of the measuring 
system, external disturbances 
are modeled in the subnet 
“Scrambler“, which is 
included in the component 
“Disturbance“ of the 
complete system. 

3.2. Measuring system components 
The position detection of one axis is modeled with the component “Axismess” (Fig. 4). 

minmax_s 

minmax.max minmax.akt 
minmax.min minmax.upd 

minmax.mean 
minmax.amp 

minmax_c 
minmax.akt minmax.min 

minmax.max minmax.upd 
minmax.mean 

minmax.amp 

position_1 

position.per position.pos 
position.q0

position.q1
position.q2
position.q3

position.nsin
position.ncos

position.not_zero

update_1

UpdateUpdate

mess_1

Mess.PER
Mess.DIR

Mess.q0
Mess.q1
Mess.q2

Mess.q3

Mess.mean_s
Mess.samp

Mess.sin
Mess.cos
Mess.mean_c

Mess.nsin

Mess.ncos

Mess.camp

Mess.not_zero

sin 
Sine 

cos 
Cosine 

poscalculated Position nsinnormalized Sine

ncosnormalized Cosine

upd 
Update 

 
Fig. 4 Subnet “Axismess” 

At first, the input signals “Sine” and “Cosine” are normalized in the subnets “Minmax_s” and 
“Minmax_c”. These subnets are identical in its functions and were instantiated during the 
modeling process from the same class “Minmax” (Fig. 5). 
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Fig. 5 Subnet “Minmax” 



To find out the exact position of the carrier, the cycle number has to be determined in 
“Mess_1”. To determine this correctly, the measuring system has to detect the moving 
direction of the carrier and with it the increasing or decreasing of the cycle number. The 
original measuring system used a look-up table, but this was very hard to model with Petri 
nets. Therefore, we changed this into logic rules and used this to model the subnet 
“Position_1”. 

3.3. Model of the entire system 
In Fig. 6, the model of the entire system is shown. Besides the measuring system, it includes 
the components for signal generation and external disturbance simulation. The components 
for signal generation “x/y1/y2-direction” are instances of the class “Signal” and model the 
signals of an ideal environment. 

The component “Disturbance” includes the simulation of various kinds of signal disturbances 
(displacement of the zero line, amplitude errors, time delay etc.). The signal disturbances can 
be turned on and off at any time during the simulation. 

The objects “Axismess_x/y1/y2” are based on the class “Axismess” and include the 
evaluation algorithm for the three directions. The motion of any desired direction can be 
controlled by feeding marks into the places m1 to m8. 

The x-position, the average y-position and the divergence of the y-position arose as result of 
the net calculation. 

3.4. System simulation 
The tool “Visual Object Net++” [5] allows not only the modeling but also the simulation of 
systems described with Hybrid Dynamic Nets. During the simulation the firing of the 
transitions and the transport of the tokens are animated. The changes of the place values can 
be visualized by signal diagrams (Fig. 7). 
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Fig. 6 Model of the entire system 



E.g., the middle top diagram in Fig. 7 shows an extreme example of a simulation with 
disturbances. It shows a clear exceeding of the zero line of the cosine signal. Nevertheless, the 
normal values are correctly calculated and the position of the machine is correctly displayed. 

4. CONCLUSION 
Our investigation has shown the advantages of using hybrid Petri nets for homogeneous 
modeling of an embedded hybrid system. The object-oriented approach of the hybrid Petri net 
class used makes possible a clear modeling of complex hybrid systems. 

Future things that have to be done are the extension and completion of the system model, and 
the integration of the modeling process in a complete design flow. Here we focus our future 
work on connecting our approach to other approaches related to hardware/software 
partitioning. 
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Abstract. Hardware description languages are used to model logical systems on 
the behavioural level. The model describes the system as a set of interconnected 
processes, which can be executed in parallel and represents two aspects of the 
process – computation and control. Control can be modelled by Petri nets. Such 
a model is very useful to analyse, which state can be reached starting from a given 
system state. Petri net models of all VHDL control statements are shown in this 
paper. These models are used to generate automatically control flow model. 

Key Words. Hardware Description Language, Petri nets, control flow 

1. INTRODUCTION 
In the VLSI area a structured design process is required. In response to this need hardware 
description languages (HDL) are developed. VHDL is a language for describing digital 
electronic systems. It is designed to fill a number of needs in the design process. Firstly, it 
allows description of the structure of a design, that is how it is decompose into sub-designs 
and how these sub-designs are interconnected. Secondly, it allows the specification of the 
function of designs using familiar programming language forms. Thirdly, as a result, it allows 
a design to be simulated before being manufactured, so that designers can quickly compare 
alternatives and test for correctness without the delay and expense of hardware prototyping. 
VHDL models are also used in the process of generating test and silicon compilation.  

2. CONCURENCY 
The hardware description languages must have a mechanism for modelling signals flow 
through the circuit. In VHDL (VHSIC Hardware Description Language) this requirement is 
handled by the process construct. Each process represents a block of logic and all processes 
execute in parallel. The process construct represents the method by which concurrent 
activities (parallel signal flow) in digital circuits are modelled. 

The VHDL model represents two separate aspects of the process - computation and control, 
but the model does not explicitly distinguish between control and data. We have to find out 
ourselves this different semantic. The control part of circuit usually has much less states than 



the data part thus it is possible and feasible to derive the control structure This structure can 
be represented by using Petri nets. It is interesting to analyse, which state can be reached 
starting from a given system state. 

3. CONTROL FLOW  
As mentioned above, the VHDL control information can be represented using Petri nets. The 
sequence of instructions, the flow of information and the order of computation performance 
can be modelled by means of Petri nets. 

The control flow model is derived from the VHDL source code in the following way: 
� places represent VHDL code statements, 
� transitions represent actions - execution of code statements from its pre-places. 

Control flow can be modelled with using Conditional Petri Nets with Time [3]. 

Def. Control flow model 
The Petri-net representation of the control flow in VHDL model, CFPN, is a digraph derived from 
the VHDL source code, with mapping of VHDL code statements to the places. Transitions 
represent execution of these statements.  
CFPN = (P, T, F, Mo, D, C), where: 
P = { p1, p2,..., pn} - a finite set of places, 
T = { t1, t2,..., tm} - a finite set of transitions, 
Mo = { m1, m2,..., mn} - an initial marking, 
D = { d1, d2,..., dm} - a finite set of time intervals associated with transitions, 
C = { c1, c2,...., cm} - a finite set of conditions associated with transitions, 
F - a control flow relation. 

Petri net model of the control flow is automatically derived from the VHDL source program. 
To do it, it’s necessary to find all VHDL control statements and control variables. In order to 
do it, an index S is assigned to each statement. The Petri net place, which represents statement 
S, has the same index. The next chapters describe Petri net models of VHDL control 
statements. 

4. PROCESSES AND THE WAIT STATEMENT 
The primary unit of behavioural description in VHDL is a process. It is a sequential body of 
code which can be activated in response to changes in state. When more than one process is 
activated at the same time, they execute concurrently. The process is specified as follows [2]: 

PROCESS(sensitivity_list) 
 process declarative part 
begin 

 sequence of statements (1) 

END PROCESS (2) 

The process is activated initially during the initialisation phase of simulation. It executes all of 
the sequential, and then repeats, starting again with the first statement. The process may 
suspend itself by executing a wait statement. This is of the form: 

WAIT ON sensitivity_list UNTIL condition FOR time _expression; (1) 

The sensitivity_list of the wait statement and the list in the header of the process statement 
specify a set of signals to which the process is sensitive while it is suspended. When an event 



occurs on any of these signals, it means the value of the signal changes, the process resumes 
and evaluates the condition. If it is true or if the condition is omitted, execution proceeds with 
the next statement. Otherwise the process resuspends. The time_expression indicates the 
maximum time for which the process will wait. If it is omitted, the process may wait 
indefinitely.  

 

Fig.1. Petri net model of a process.  Fig.2. Petri net model of a Wait statement. 

A Petri nets model of a process is shown at the Fig. 1. Transition t1 is the conditional 
transition and represents an input to the process. It can be fired, when a token is in the place 2, 
and the value at least one of the signal from sensitivity_list changes. A token in the place 2 
indicates, that the process is suspended. After firing t1 process is resumed (a token in the 
place 1) and is active until transition t2 is fired. Then the process will be suspended again. 

Fig. 2 shows Petri net model of Wait statement. This statement suspends process. The process 
is resumed after firing transition t.  

5. PETRI NET MODEL OF CONTROL STATEMENTS 
In this section Petri net models of all control statements are shown. These models are used in 
the process of automatic control flow model derivation. 

There are some control statements in VHDL: 

� IF-THEN-ELSEIF-ELSE 
� CASE 
� LOOP 
� EXIT 
� NEXT 

5.1. Conditional statement 
The full form of the conditional IF statement is as follows [1]: 

 IF condition_1 THEN (1 
  sequence of statements (2) 
 ELSEIF condition_2 THEN (3) 
  sequence of statements (4) 
 ELSE  
  sequence of statements (5) 
 END IF; (6) 

1
signal changes and condition or 

timeout 
t

 

1 

signal changes 

2 

t1 

t2 

 



The elseif and else clauses are optional. Petri net model of IF statement is shown at the Fig.3. 

Fig.3. Petri net model of the IF statement. 

 

Transitions t1, t2, t3 and t4 are conditional. It means, that the each of this transition may be 
fired if it is enabled and if its condition is TRUE.  
Transitions t5, t6 and t7 are the time transitions. Each time attributed to these transitions 
represents delay associated with realization of statements 5, 4 and 7 respectively. 

5.2. CASE statement 
The case statement performs decoding based on the value of a control expression and then 
executes a selected statement or group of statements. The full form of this statement is as 
follows:  

CASE n IS (1) 

 WHEN expression_1⇒statement_1; (2) 

 WHEN expression_2⇒ statement_2; (3) 

 … 

 … 

 WHEN expression_n⇒ statement_n; (n+1) 

 END CASE; (n+2) 

 

The Petri net model of this statement is shown at Fig.4. Transitions t1, t2, tn are conditional 
transitions and can be fired, if the value of control expression is equal n. 
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Fig.4. Petri net model of the CASE statement. 

5.3. Loop statements 
VHDL has a basic loop statement, which can be augmented to the usual forms while and for 
loops seen in other programming languages. The for iteration scheme allows a specified 
number of iterations. The loop parameter l declares an object, which takes on successive 
values from the range [wp, wk] for each iteration of the loop [1]. 

 FOR l IN wp TO wk LOOP (1) 

 sequence of statements (2) 

 END LOOP; (3) 

The while iteration scheme allows a test condition to be evaluated before each iteration. The 
iteration only proceeds if the test (l<= wk) evaluates to TRUE.  

loop label: WHILE condition LOOP (1) 

 sequence of statements (2) 

 END LOOP loop label; (3) 

Petri net models of these two loop statements are shown at Fig. 5 and 6 respectively. 

 
 

 

 

 

 

 

 

Fig.5. Petri net model of the FOR…LOOP 
statement. 

Fig.6. Petri net model of the WHILE…LOOP 
statement. 
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There are two additional statements, which can be used inside a loop to modify the basic 
pattern of iteration. The next statement terminates execution of the current iteration and starts 
the subsequent iteration. The exit statement terminates execution of the current iteration and 
terminates the loop.  

loop label: WHILE condition_1 LOOP (1) 

 sequence of statements; (2) 

 NEXT loop label WHEN condition_2 (3) 

 sequence of statements; (4) 

 END LOOP loop statement; (5) 

The Petri net model of this statement is shown at Fig.7. 

The loop statement with exit is presented below and its Petri net model is shown at Fig. 8. 

 LOOP (1) 
 sequence of statements; (2) 

 EXIT WHEN condition; (3) 

 sequence of statements; (4) 

 END LOOP; (5) 

 

 
Fig.7. Petri net model of the WHILE…LOOP 

with NEXT statement. 
Fig.8. Petri net model of the LOOP with EXIT 

statement. 
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6. SUMMARY 
In this paper Petri net models of VHDL control statements are presented. These models are 
used to generate automatically of control flow model. The control flow dictates the partial 
ordering of data flow in VHDL model and represents the conditions under which the 
processes are activated. Petri net model of VHDL control flow is very useful in the process of 
generating tests for design verification. 
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1. INTRODUCTION 
As devices become more complex, their design processes take more time and become more 
expensive than before. One of the most important improvements, which was introduced over 
the past years, is an RTL synthesis tools, which automates the design transformation from 
RTL into gate-level process [10]. Since its introduction, most of a designer's efforts stop at the 
RTL stage of the design specification. Automated tools perform the rest of work (fig. 1). The 
synthesis tools have been improved since their first appearance, and it now makes no sense in 
terms of an economical aspect to try to make a better design manually than a synthesized one. 
A few decades ago the algorithm's distinction into either software or hardware was 
introduced. The possibilities of today's highly integrated chips cause, such a distinction is not 
so obvious now [8,11]. The algorithms also become more complex and change frequently. 
Making updates in the present hardware implementations is a costly and time-intensive 
process. The algorithms are now prototyped and verified in a software implementation 
version. Often they exist in software form for a longer time, acquiring stability before 
hardware implementation is required. This is a way hardware designers turn to classical 
programming languages such as C or C++ at the first stage of the project instead of using 
HDL languages. This causes new problems. One of them is making the transition from C/C++ 
implementation into HDL implementation. These two implementations are totally different: 

- C/C++ implementation is a sequential process (in most cases) while HDL 
implementation is a parallel, multi-process design, 

- - C/C++ implementation runs without any clock signals while HDL implementation 
must take into consideration system clock signal and must address the signals timing 
issues. 
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Fig. 1. Hardware design paths: with use of an HDL language (left) and with use of HDL classes in 
C++ (right) 

 

The designer has to wait until the entire project is converted into HDL before he or she can 
validate the design again. This causes the conversion bugs to accumulate, making running the 
entire project much more difficult than in the case of having regular regression tests. A 
different approach has been proposed that address these problems. Currently, the most 
popular design solution is C++ library of HDL classes [2,3,9]. HDL classes enables a normal 
C/C++ environment with HDL constructs like modules, processes and signals. The designer 
performs a full conversion process in the same environment. As a result, the designer is able 
to make regular regression test at any stage of the conversion. Unfortunately, HDL classes 
library is not a solution that fully automates the hardware design path. The designer still has 
spent a lot of time on re-writing (refining) the project code from software form into HDL 
form (fig. 1). 

Aldec's CHDL approach addresses exactly the problem of C to HDL conversion automation. 
Instead of enabling C/C++ environment with HDL features and pushing the user to go 
throught the refine steps until reaching RTL model, CHDL enables users to synthesize the 
HDL code directly from the C algorithm in its natural form.  

2. CHDL NOTATION 
CHDL is a subset of the C language [6]. The C constructs that made it impossible to perform 
full static data and analyze control flow were removed. The table 1 summarizes the C 
constructs included in or rejected from CHDL notation. 



Table 1. Summary of C constructs included and rejected in CHDL notation 
Constructs 

class 
Included C 
constructs 

Rejected C 
constructs 

Comments 

Built-in types char, int, float, double void, pointer types  

Complex types structure, 

union 

 translated by fields 
expansion into HDL 

Operators most of C operators * & (indirection and 
address of) 

 

Statements if, switch, while, 
do while, for, 
function call 

 non-recursive 
functions are allowed 
only 

Local scopes 
and visibility 
rules 

 cross-references over 
function boundary 

 

 

The only limitation for a C programmer when using CHDL is the reduced spectrum of 
available language features. There is no requirement to re-write the C algorithm in terms of 
modules, processes or registers like it is in case of HDL classes. The designer only needs to 
eliminate the forbidden constructs, but the algorithm structure remains untouched at the same 
level of abstraction. As a result, CHDL will offer true system level design capabilities (un-
timed design). 

While manual C code refine into HDL classes the designer explicitly specifies the algorithm's 
inherent parallelism (by decomposing the algorithm into processes). Also the hardware 
architecture and available resources are explicitly denoted. Consequently, the compilation 
from HDL classes model to HDL is very simple process, preserving all semantics of 
constructs used in design specification. 

All of this additional information (regarding an algorithm's parallelism and its preferred 
implementation in hardware) is not present in the CHDL description of an algorithm. Instead, 
it utilizes a CHDL compiler task to take all required decisions while compiling the algorithm 
into HDL (fig. 2). 

3. BEHAVIORAL SYNTHESIS FROM CHDL DESCRIPTION 
Having a C algorithm written with the use of behavioral constructs from a small subset 
(CHDL notation) is very simple to make its transformation into HDL version. Each CHDL 
construct has a directly corresponding construct in HDL language. Of course, such a naive 
conversion would result in a single-process design. After synthesizing it into gate level, the 
designer will create a working design, but with very poor throughput to area size rate. The 
tool for real use must perform CHDL to HDL conversion in an intelligent way, which means 
that the behavioral synthesis approach must be implemented. The tool will take on the 
majority of decisions on its own. The user should only specify guidelines for preferred 
implementation architecture. The synthesized implementation consists of a two kinds of 
logical blocks, which are: 

- the processing units, 
- the control circuits. 
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Fig. 2. The hardware design path with use of CHDL notation 

The size of the control overhead depends on the proportion between the number of the 
algorithm's elementary sub-tasks units and the number of allocated resources for them. In the 
event there are less resources then sub-tasks to be processed, the control circuits must provide 
sharing the processing units in time, which translates into additional cycles for input data 
fetching, retrieving results from outputs and storage of intermediate results. As in any case, 
there is a trade-off between implementation size and its efficiency (power dissipation, 
throughput) [12]. In a normal design path, the designer has to make such decisions early in the 
design cycle, and the initial decision will make a large impact on the final result. With an 
automated path, designers can explore more than one architecture with relatively low costs or 
risks. 

As an example, refer to a 2-D Discrete Consine Transform algorithm [4,5,7]. Assuming that 
the software implementation is already in place, the formula would appear as illustrated below 
[1]: 
void fct2d(double f[], int nrows, int ncols) {

int u,v;
// ...
for (u=0; u<=nrows-1; u++) {

for (v=0; v<=ncols-1; v++) {
g[v] = f[u*ncols+v];



}
fct(g,ncols);

}
for (v=0; v<=ncols-1; v++) {

for (u=0; u<=nrows-1; u++) {
g[u] = f[u*ncols+v];

}
fct(g,nrows);
for (u=0; u<=nrows-1; u++) {

f[u*ncols+v] = g[u]*two_over_sqrtncolsnrows;
}

}
}

This algorithm works as follows: 

- 1-D DCT (fct() function) is performed for each row of the matrix f, 
- the 1-D DCT is performed for each column from the result matrix after rows 

processing, 

- the whole result matrix is scaled with a constant coefficient. 

From the data and control flow analysis, it is possible to find and extract elementary sub-tasks 
that are independent of each other and can be processed in parallel. In this example, there are 
few groups of elementary tasks (fig. 3): 

- fct() on each row of f, 
- fct() on each column of result from previous processing, 

- scaling each element of result from previous processing. 
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Fig. 3. The data and control flow diagram extracted from source code analysis 

The designer now needs to decide what the synthesis mode to use for hardware 
implementation of this algorithm will be. The blank array mode can be used if the f matrix 
sizes are fixed. In this case, the fastest implementation as well as the larger one will allocate 



its own processing unit. The fixed resources mode may be preferred, especially when the f 
matrix size varies in run-time. In this case, one will get an implementation that contains the 
limited number of processing units and the control block. It could be that the resulting size of 
the implementation will still not satisfy the requirements for the first time. If this is the case, 
the user has to try other tradeoffs by specifying various synthesis constraints. 

4. CONCLUSION 
The presented example clearly shows how the behavioral synthesis can be performed from the 
system level C algorithm. There is no need to manually re-write the algorithm in HDL manner 
to precise parallelism of the algorithm. The compromise made in the aforementioned 
approach is to reduce the flexibility of a source language (C in this case) in favor of a 
predictable construct for algorithm notation that allows its static analysis. From the very 
coarse version of the synthesis tool, new compilation techniques are applied incrementally for 
improvement results. There are still several problems to be researched and solved as a 
practical implementation in this synthesis tool. The most important issues are as follows: 

- processing units synthesis or re-use of library units, 
- automatic processing unit functionality selection based on the elementary sub-tasks 

code analysis. 
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Abstract. The FSM and Petri nets theories have elaborated many techniques and 
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synthesis, testing and the verification. Many of them are based on symbolic state 
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1. INTRODUCTION  
Statecharts are a visual formalism for the specification of reactive systems, which is based on 
the idea of enriching state-transition diagrams with notions of hierarchy, concurrency and 
broadcast communication [6,7,8,10]. It was invented as a visual formalism for complex 
systems by David Harel [7]. Today, as a part of UML technology, it is widely used in many 
fields of modern engineering [11]. The presented approach features such characteristics as 
Moore’s and Mealy’s automata, history and terminal states. There are many algorithms based 
on a State Transition Graph traversal for finite state machines, which have applications in the 
area of synthesis, test and verification [2,3,4,5,10]. It seems to be very promising to use well 
developed techniques from FSM and Petri net theory in the field of synthesis [1], testing and 
the verification of controllers specified by means of statechart diagrams. These considerations 
caused the elaboration of the new algorithms of symbolic state space exploration. 

2. SYNTAX AND DEFINITIONS 
Based on the formalism contained in [8], the following definition of syntax can be given. Let 
S be the infinite set of states, T the infinite set of transition, E the infinite set of events. 
Symbols l,,,,, 321 sssss ′  are used to range over S, l,,,,, 321 ttttt ′  to range over T, 

l,,,,, 321 eeeee ′  to range over E. 
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Fig. 1. TV remote controller: a) statechart diagram, b) set of all global states, c) set of all reachable 

configurations, d) characteristic function [ 0CX  

Definition 1 Statechart 
A Statechart Z is a tuple consisting of the following elements: 

( )zzzzzzzzzzz sactiontlabelinoutTEhistorydefaulttypehrcS ,,,,,,,,,,  
where: 
1. S⊆zS  is the finite non-empty set of states. 
2. zS

z Shrc 2: →z  is the hierarchy function, which for every state zSs ∈  assigns the set of 
immediate sub-states of s.  

3. { }ORANDStype zz ,: →  is the state-type function. 
4. zzz SSdefault →:  is the default function. 
5. { }falsetrueShistory zz ,: →  is the Boolean history function. 
6. E⊆zE  is the finite set of events. 
7. T⊆zT  is the finite set of transition. 
8. { }zzzz rootSTout \: →  is a total function, called source function, such that ( ) stoutz =  if 

transition t originates from state s.  
9. { }zzzz rootSTin \: →  is a total function, called target function, such that ( ) stinz =  if 

transition t ends in s state.  
10. For every transition zTt ∈ , the following predicate holds: 

( )( ) ( )( ) stinparenttoutparent zzz ==  with ( ) ORstypez = . 



11. zz EE
zz Ttlabel 22: ×→  is the transition labelling function. The first component of ztlabel  

is called ( )ttriggerz , the second is called transition action and is denoted ( )ttactionz . 
12. zE

zz Ssaction 2: →  is the state labelling function, which gives the set of events 
associated to state s. 

To use statecharts as a model for the specification of the digital controller it is necessary to 
give a real world interpretation of such notions as event, set of events or label. The following 
definition introduces the interpreted statecharts model. Based on this definition it is possible 
to use the statechart diagram as a mean of the specification of the digital controller or reactive 
systems. 

Definition 2 Interpreted Statechart 
An Interpreted Statechart is a statechart as in Definition 1 where: 
1. zEX ⊆  is a set of events coming from the environment, zEY ⊆  is a set of events visible 

to the outside world 
2. An event is a named signal that is either present or absent. I is a set of all signals in the 

system, both input, output and internal ones. 
3. XIXinput →:  where II X ⊆  – is a function assigning the event coming from the 

environment to a signal. YIYoutput →:  where IIY ⊆  – is a function assigning the event 
visible to the environment to a signal and ∅=∩ YX II . Signals related to events coming 
from the outside world and visible to the outside world are, respectively, the input and the 
output of the system. The sets of input and output events are disjoint. 

4. Component ( )ttriggerz  of the transition labelling function ztlabel  called guard is a 
Boolean expression generated by the following grammar: 

g ::= true | false | i | !g | g + g | g * g | (g)
where Ii ∈  is a signal associated to event zEe ∈ . The evaluation of an event is either 
true or false when the event is either present or absent. The operators !, + and * 
correspond to the Boolean operators not, or and and, respectively. 

5. Functions ( )ttactionz  and ( )ssactionz  lists a set of events zEa ⊆  associated with 
transitions and states respectively, according to the following rule: 

a ::= nil | b
b ::= i | b, b 

where Ii ∈  is a signal associated to an event and “,” distinguishes two events in an action. 

It is essential from a symbolic technique point of view to express the concept of the set of 
states. The notion of  characteristic function, well known in algebra theory, can be applied [2].   

Definition 3 Characteristic function 
A characteristic function AX  of a set of elements UA ⊆ is a Boolean function 

{ }1,0: →UX A  defined as follows: 

( )


 ∈⇔

=
.0

,1
otherwise

Ax
xX A  (1) 

The characteristic function is calculated as a disjunction of all elements of A. Operations on 
sets are in direct correspondence with operations on their characteristic functions. Thus: 

( ) BABA XXX +=∪ ; ( ) BABA XXX *=∩ ; ( ) AA
XX =  (2) 

The characteristic function allows sets to be represented by BDDs. Fig. 1d presents the 
characteristic function of all possible configurations [2]. 



3. MODELLING SYNCHRONOUS INTERPRETED STATECHART BY BOOLEAN 
 EQUATIONS 

The modelling of statecharts is based on the assumption that for every state zi Ss ∈  one flip-
flop is assigned, and then for every such flip-flop excitation function, as a Boolean 
expression, is produced, Fig. 2. The excitation function δ evaluates to 1 when the flip-flop 
associated with si will be active in the next iteration or remembers past activity, otherwise it 
equals 0. A state is said to be active when every state belonging to the path, carried from it to 
the root state, is active. Global state G of the system, called marking,  is represented by the set 
of all states of flip-flops. A configuration C is a set of all active states. The excitation function 

( )IS zi ,δ  is defined on signals and current states of  flip-flops. A detailed description of the 
creation of the functions is beyond the scope of this paper and the method developed by the 
author will be published soon.  

Let Z be a synchronous interpreted statechart and Ω the set of all possible markings of Z. Each 
marking of Z can be coded as a vector ( )nnM µµµ ,,, 211 l=×  where { }1,0∈iµ  represents the 
activity of flip-flop representing a state zi Ss ∈  and n is a number of all states in Sz. The set of 
all reachable markings from default marking M0 is denoted [ 0M . Firing of a transition tk 
transforms a marking Mi into marking Mj. This fact is denoted by [ jki MtM . It is possible to 
fire a set of enabled transitions in a given moment of discrete time. Any set of  markings can 
be represented using its characteristic function.  

STATECHART SYSTEM

excitation
functions

output
functions

set of
flip-flops

Y
X

∆

clock
reset

signal
functions

 
Fig. 2. Statechart system model 

By the association of the excitation function with a state, a direct application of FSM and 
Petri Nets traversal algorithm can be used. The transition function in Fig. 2 Ω→Ω∆ : , is 
defined as a functional vector of a Boolean function: ( ) ( ) ( )[ ]ISISIS znzz ,,,,,: 21 δδδ l∆ , 
where ( )IS zi ,δ  is an excitation function of the state si flip-flop and I is the set of signals in 
the system represented by their functions. In Fig. 1d  symbol si denotes both a state in the 
diagram and a variable of characteristic function. Boolean expressions related to transition 
functions can be implemented by using topological information from the diagram.  

4. SYMBOLIC STATES SPACE EXPLORATION OF STATECHARTS 
Symbolic state space exploration techniques are widely used in the area of synthesis, testing, 
and the verification of finite state systems. Coudert et al were the first to realise that Binary 
Decision Diagram (BDDs) could be used to represent sets of states [4]. This led to the 



formulation of an algorithm that traversed the State Transition Graph in breadth-first manner, 
moving from a set of a set of states to the set of its fan-out states. In this approach a set of 
states is represented by means of characteristic functions. The key operation required for 
traversal is the computation of the range of a function, given a subset of its domain [2]. The 
computational cost of these symbolic techniques depends on the cost of the operation 
performed on the BDDs and does not depend on the number of states and transitions. For 
example, from Fig. 1a BDD characteristic function for the set of all global states (Fig. 1b) 
consists of 21 nodes, and characteristic function for the set of all configurations (Fig. 1c) 
counts 20 nodes. The symbolic state exploration of statecharts relies on: 
- association transition functions to states,  
- association logic functions to signals, 
- representation of Boolean function as BDDs, 
- representation of sets of states using their characteristic functions, 
- computation of a set of next states as an image of the state transition function on the 

current state set for all input signals. 

Starting from the default configuration and the set of signals, symbolic state exploration 
methods enable the computation of the entire set of next states in one formal step. Burch et al 
and Coudert et al were the first to independently propose the approach to the image 
computation [4,5]. Two main methods are transition relation and transition function. The 
latter is the method implemented by the author. The symbolic state space algorithm of 
statechart Z is as follows: 

symbolic_traversal_of_Statechart(Z, initial_marking) {

[ 0MX  = current_marking = initial_marking;

while (current_marking != Ø) {
next_marking = image_computation(Z, current_marking);

current_marking = next_marking * [ 0MX ;

[ 0MX = current_marking + [ 0MX ;

}
}

Fig. 3. The symbolic traversal of Statecharts 

The variables in italics represent characteristic functions of corresponding sets of 
configurations. All logical variables are represented by BDDs. Several subsequent 
configurations are simultaneously calculated using the characteristic function of current 
configurations and transition functions. This computation is realised by the 
image_computation function. The set of subsequent configurations is calculated from the 
following equations:  

( )( )[ ]( )∏ =
′∃∃= n

i iixs xsmarkingcurrentsmarkingcurrentmarkingnext
1

,*_*__ δ�  (3) 

ssmarkingnextmarkingnext ←′= __  (4) 

where s, s’, x denote the present state, next state and input signal respectively; s∃  and x∃  
represent the existential quantification  of the present state and signal variables; symbols � 
and * represent logic operators XNOR and AND respectively; equation (4) means swapping 
variables in expression. 

Given the characteristic function of all reachable global states of a system, it is possible to 
calculate the set of all configurations. As mentioned earlier in section 3, a state is said to be 
active when every state belonging to the path, carried from it to the root state, is active. This 



leads to the formulation of a state activating function. Let αi be a Boolean function 
{ }1,0: →zi Sα  which evaluates to 1 when state si is active. The generation of a set of all 

configurations relies on the image computation of a characteristic function in transformation 
by activating functions: 

[ [ [ ( )( )[ ]( )∏ =
′∃∃= n

i iMiMxsC xsXsXX
1

,**
000

α�  (5) 

[ [ ssXX CC ←′=
00

 (6) 

The example in Fig. 1a describes the behaviour of a remote controller. The remote can be in 
11 global states (Fig. 1b) which correspond to the set of  7 possible configurations (Fig. 1c). 

5. CONCLUSION 
A visual formalism proposed by David Harel can be effectively used to specify the behaviour 
of digital controllers. Controllers specified in this way can subsequently be synthesised in 
FPGA circuits. In this paper it has been shown that state space traversal techniques from FSM 
and Petri nets theory can be efficiently used in the fields of statechart controllers design. The 
presented issues are a matter of the author’s investigations. Within the framework of the 
research, a software system called HiCoS has been developed, where presented algorithms 
have been successfully implemented.  
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Abstract. The Extensible Markup Language (XML) is a subset of SGML that is 
completely described in this document. Such language can be used for modelling 
Petri nets. XML is used, because it can be exchanged between different systems. On 
the other hand, XML format is platform-independent, well supported, and license-
free. XML is a set of rules, guidelines, and conventions, whatever you want to call 
them, for designing text formats for such data, in a way that produces files that are 
easy to generate and read. In this paper, a possibility of XML modelling and 
simulation of Petri net is presented. 
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1. INTRODUCTION 
Petri net is a graphical and mathematical modelling tool. It can describe processing systems, 
which are characterized as being concurrent, asynchronous, distributed, nondeterministic [6]. 
In the presented method, Petri net is used for modelling of digital circuits, especially 
concurrent controllers. 

In the paper a new way of describing of Petri net is presented. The proposed method is based 
on the Extensible Markup Language (XML).  

XML describes a class of data objects called XML documents and partially describes the 
behavior of computer programs which process them. XML is an application profile or 
restricted form of SGML, the Standard Generalized Markup Language [ISO 8879]. By 
construction, XML documents are conforming SGML documents [8]. 

The next step (after modelling) of design of digital circuit is analysis. There are different 
methods of verification of modelled system. One of the simplest methods is simulation. It is 
similar to the debugging of program execution. During simulation it is possible to check 
whether a circuit modelled by a Petri net behaves correctly. Therefore it is possible to 
recognise and remove errors in the controllers, even at early stage of design.  

Several specification and design techniques based on Petri nets have been proposed [1,4,7]. 
They are based on software tools that help designers to develop and simulate (animate) the 



system at a conceptual and abstract level. They are usually very formal and oriented towards 
the verification (simulation) aspects of design. 

2. BACKGROUND 
In this chapter basic information about Petri net and XML application is presented.  

2.1. Petri nets 
Petri nets are mathematical object that exists independently of any physical representation. 
The nets can effectively describe parallelism. The graphical form of a Petri net is used as a 
tool for the modelling and analysis of digital circuits, especially concurrent controllers. 

A Petri net is a well-known mathematical formalism. There are different classes of Petri nets 
[6]. However, for the modelling of digital systems only selected classes are applicable. In this 
paper, coloured interpreted Petri nets are considered. Firstly, only a basic information and 
definitions are presented. 

Petri net is an oriented bipartite graph with two subsets of nodes called the places and the 
transitions and the arcs joining places to transitions or transition to places. Petri net PN is a 4-
tuple [2,3]: 

PN = (P, T; F, M0),  
where P – a finite set of places; 

T – a finite set of transitions;  
F – flow function (i.e. a finite set of arcs);  
M0 – initial marking. 

On Fig. 1 an example of interpreted Petri net is presented. 
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T2 
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Fig. 1. An example of Petri net 



2.2. XML application 
The Extensible Markup Language is a set of rules for defining semantic tags that break a 
document into parts and identify the different parts of the document. It is a meta-markup 
language that defines syntax used to define other domain-specific, semantic, structured 
markup languages [8]. 

XML is a meta-markup language for designing domain-specific markup languages. Each 
XML-based markup language is called an XML application. This is not an application that 
uses XML like the Mozilla Web browser, the Gnumeric spreadsheet, or the XML Pro editor, 
but rather an application of XML to a specific domain such as Chemical Markup Language 
(CML) for chemistry or GedML for genealogy. 

Each XML application has its own syntax and vocabulary. This syntax and vocabulary 
adheres to the fundamental rules of XML. This is much like human languages, which each 
have their own vocabulary and grammar, while at the same time adhering to certain 
fundamental rules imposed by human anatomy and the structure of the brain. 

XML is an extremely flexible format for text-based data. The reason XML was chosen as the 
foundation for the wildly different applications discussed in this chapter is that XML provides 
a sensible, well-documented format that’s easy to read and write. By using this format for its 
data, a program can offload a great quantity of detailed processing to a few standard free tools 
and libraries. Furthermore, it’s easy for such a program to layer additional levels of syntax 
and semantics on top of the basic structure XML provides. 

2.3. Petri Net Specification Format 3 
Petri net can be present in textual form as a set of rules. Petri Net Specification Format 3 
(PNSF3) is one of such textual formats. The format is based on Extensible Markup Language. 
PNSF3 is developed at Technical University of Zielona Gora and it based on PNSF2. By 
using PNSF3 an interpreted, hierarchical and coloured Petri net can be modelled.  

The PNSF3 format specifies the structure of Petri net. PNSF3 does not keep information 
about placement of places, transitions, arcs, etc. It keeps information about names of places, 
transitions, number of markers, connection between places and transitions. That’s why this 
format is simple to create and modify. PNSF3 format is easy to parse and converse to various 
representations. Such a way of describing creates new possibilities for example of simulation 
of Petri net using scalable vector graphics. 

Most Petri-net research groups have their own software packages and tools to assist the 
drawing, analysis and simulation of various applications. They have their own Petri net 
format, too [5]. Now, XML based format helps to exchange data between various tools. Such 
approach gives possibility to verification new methods of analysis using well know and tested 
systems. The old formats of describing Petri net are not quite enough to apply for such 
verification. The goals for new XML based format are [8]: 

� flexible (extendable), 

� complex description, 

� platform independent, 

� human readable, 

� easy to parse and transform. 

Presented format (Fig. 2) is different from XML based format using in another Petri net tools. 
It differs in stored information about Petri net. In other well know systems for modelling and 



analysis, XML based format keeps information about placement of elements of Petri net [5]. 
Preparing such format without graphical editor is very difficult. Because system in which 
PNSF3 is used, have no graphical editor; there cannot be store information about placement. 

 
<?xml version="1.0"
encoding="ISO-8859-2" standalone="yes"?>

<pnsf3>

<clock>CLOCK</clock>

<input id="x1"> </input>
<output id="S1"> </output>
<output id="R1"> </output>

<place id="P1">
<initmark id="m1">

<noofmark>1</noofmark>
</initmark>

</place>
<place id="P2" />
<place id="P3" />
<place id="P4" />
<place id="P5" />

<predicate id="pred1">x1</predicate>
<predicate id="pred2">!x1</predicate>

<transition id="T1" />

<transition id="T2">
<condition id="c1">pred1
</condition>

</transition>

<transition id="T3">
<condition id="c2">pred2
</condition>

</transition>

<transition id="T4" />

<net>
<arc>

<inplace>P1</inplace>
<outplace>P2</outplace>
<outplace>P3</outplace>
<trans>T1</trans>

</arc>

<arc>
<inplace>P2</inplace>
<outplace>P4</outplace>
<inpred>pred1</inpred>
<trans>T2</trans>

</arc>

<arc>
<inplace>P3</inplace>
<outplace>P5</outplace>
<inpred>pred2</inpred>
<trans>T3</trans>

</arc>

<arc>
<inplace>P4</inplace>
<inplace>P5</inplace>
<outplace>P1</outplace>
<trans>T4</trans>

</arc>
</net>

<MooreOutputs>
<placeMoore>P2</placeMoore>
<postcon>S1</postcon>

</MooreOutputs>

<MooreOutputs>
<placeMoore>P4</placeMoore>
<postcon>R1</postcon>

</MooreOutputs>
</pnsf3> 

 
Fig. 2. PNSF3 for Petri net (Fig. 1) 

3. SCALABLE VECTOR GRAPHICS 
Scalable Vector Graphics (SVG) was created by the World Wide Web Consortium (W3C), 
the non-profit, industry-wide, open-standards consortium that created HTML and XML, 
among other important standards and vocabularies. Over twenty organizations, including Sun 
Microsystems, Adobe, Apple, IBM, and Kodak, have been involved in defining SVG [9]. 

SVG is a language for describing two-dimensional graphics in XML. SVG allows for three 
types of graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and 
curves), images and text. Graphical objects can be grouped, styled, transformed and 
composited into previously rendered objects. A text in any XML namespace can be suitable to 
the application, which enhances searchability and accessibility of the SVG graphics. The 
feature set includes nested transformations, clipping paths, alpha masks, filter effects, 
template objects and extensibility [9].  



SVG drawings can be dynamic and interactive. The Document Object Model (DOM) for 
SVG, which includes the full XML DOM, allows for straightforward and efficient vector 
graphics animation via scripting. A rich set of event handlers such as onmouseover and 
onclick can be assigned to any SVG graphical object. Because of its compatibility and 
leveraging of other Web standards, features like scripting can be done on SVG elements and 
other XML elements from different namespaces simultaneously within the same Web page 
[9]. 

3.1. SVG Features 
SVG has many advantages over other image formats, and particularly over JPEG and GIF, the 
most common graphic formats used on the Web today. Specifically [9]: 

� Plain text format - SVG files can be read and modified by a range of tools, and are usually 
much smaller and more compressible than comparable JPEG or GIF images. 

� Scalable - Unlike bitmapped GIF and JPEG formats, SVG is a vector format, which 
means SVG images can be printed with high quality at any resolution, without the 
"staircase" effects you see when printing bitmapped images. 

� Zoomable - You can zoom in on any portion of an SVG image and not see any 
degradation. 

� Searchable and selectable text - Unlike in bitmapped images, text in SVG text is selectable 
and searchable. For example, you can search for specific text strings, like city names in a 
map. 

� Scripting and animation - SVG enables dynamic and interactive graphics far more 
sophisticated than bitmapped or even Flash images. 

� Works with Java technology - SVG complements Java technologies' high end graphics 
engine, the Java 2D API.  

� Open standard - SVG is an open recommendation developed by a cross-industry 
consortium. Unlike some other graphics formats, SVG is not proprietary. 

� True XML - As an XML grammar, SVG offers all the advantages of XML: 

� Interoperability; 

� Internationalization (Unicode support); 

� Wide tool support; 

� Easy manipulation through standard APIs, such as the Document Object Model 
(DOM) API; 

� Easy transformation through XML Stylesheet Language Transformation (XSLT). 

4. FROM PNSF3 TO SVG 
The main advantage of XML is that it is very easy to transform into another format (e.g. 
SVG). In this chapter a way of transformation from XML based format (PNSF3) into SVG is 
presented. 

A large majority of generally available XML based format use XSL to transformation into 
another format. XSL is a stylesheet language for XML. XSL specifies the styling of an XML 
document by using XSLT, to describe how the document is transformed into another.  
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Fig. 3.Diagram of method of transformation  

 <?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

"http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-20001102.dtd">

<svg width="500" height="500">
<g>

<ellipse cx="231.424" cy="76.3614" rx="20.5" ry="20.5"
style="stroke-width:1;stroke-opacity:1;stroke:rgb(0,0,0);
fill-opacity:0;fill:rgb(0,0,0);opacity:1"/>

<text x="219.032" y="84.4564" style="font-family:Arial;font-size:24;
stroke-width:1;stroke-opacity:1;stroke:rgb(0,0,0);
fill-opacity:1;fill:rgb(0,0,0);opacity:1">P1</text>

<path d="M232.125 23.0995 L232.125 56.0114"
style="stroke-miterlimit:4;stroke-linejoin:miter;
stroke-linecap:round;stroke-width:1;stroke-opacity:1;
troke:rgb(0,0,0);fill-opacity:1;fill:rgb(0,0,0);
opacity:1"/>

<path d="M230.315 130.331 L225.457 122.902"
style="stroke-miterlimit:4;stroke-linejoin:miter;
stroke-linecap:round;stroke-width:1;stroke-opacity:1;
stroke:rgb(0,0,0);fill-opacity:1;fill:rgb(0,0,0);
opacity:1"/>

<path d="M231.086 130.293 L235.944 122.864"
style="stroke-miterlimit:4;stroke-linejoin:miter;
stroke-linecap:round;stroke-width:1;stroke-opacity:1;
stroke:rgb(0,0,0);fill-opacity:1;fill:rgb(0,0,0);
opacity:1"/>

... 
</g>

<ellipse cx="230.5" cy="87.5" rx="4.5" ry="4.5" style="stroke-width:0;
stroke-opacity:1;stroke:rgb(255,255,255);
fill-opacity:1;fill:rgb(255,255,255);;opacity:1">

<animateColor attributeName="fill" attributeType="CSS"
values="black;white;white;white;white;white"
dur="6s" repeatCount="indefinite"/>

</ellipse>

... 
 

Fig. 4. A part of SVG file 

In section 2.3 it is mentioned, that PNSF3 do not keep information about placement. Because 
of this fact, it is difficult to directly make XSL file for transformation into SVG. For such 



case, a special program should be created to prepare XSL file. SVG file can be made in the 
other way, too. On Fig. 3 diagram of method of transformation from PNSF3 into SVG file, 
without preparing a XSL file, is presented. For the conversion a Java application is used. The 
program generates a dynamic SVG file. The presented part of file (Fig. 4) is prepared for 
PNSF3 (Fig. 2). SVG file keeps information about places, transitions, predicates, markings 
and placement of these elements. Using option of animation of dynamic SVG, it is possible to 
simulate a Petri net. At present stage, simulation of Petri net without interpretation is made. 
The next step of researches will be studying possibilities of simulation of interpreted Petri net. 

5. CONCLUSIONS 
In the paper a new format (PNSF3) based on XML for describing Petri net, is presented. The 
benefit of this format is that it allows easy changes and transformations to other formats. 
PNSF3 is described in XML syntax because XML parsers are easily available and XML is 
becoming an international standard. In the presented format, placement and set of rules are 
separated. It is both, advantage and disadvantage, because the format is very easy for 
preparing and change, but a bit difficult for converting into a graphical format. This problem 
is solved by application, which generate graphical format. Using of XML for describing Petri 
net makes it possible to simulate Petri net, by using dynamic SVG.  
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Abstract. This work presents a method for obtaining fail-safe systems based in 
parity alternation from Petri net specifications. A fail-safe system is a system 
with adequate redundancy for detecting failures and preventing them. This 
method generates a VHDL description of a system from a Petri net or state 
diagram description. These results have relevance in the integration of access 
technologies to high speed telecommunication networks, where fail safe 
mechanisms are becoming an important concern. 
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1. Introduction 

This work uses the parity alternation method to provide fail-safe [1] [2] [3] characteristics to 
graphical specifications of the type state diagram or Petri net [4]. The starting point is the 
unsafe state diagram or Petri net specification from which a VHDL description of the 
equivalent fail-safe system is generated. To do that a program providing a graphical 
interface reads the specification and internally generates a state array from a binary structure 
characterising the specification. The array is transformed appropriately to obtain a fail-safe 
system and turn it into a VHDL description. A block diagram of the processes involved is 
shown in figure 1. 

2. Parity alternation method 

This work uses the parity alternation method to provide the fail-safe mechanism, as 
described in [1]. The method and the proof of equivalence between the safe and unsafe 
specifications, which are available to the reader in the references, is not the objective of this 
paper. However, it can be summarised in the following paragraph. 



 

  

The method consists of coding every state in a state diagram with a different parity respect 
to those contiguous states in the diagram. Every transition in the state diagram goes from a 
source state to a destination state with a different parity. Fail-safe means that if an error 
occurs and a transition between two states with the same parity has occurred, then the error 
can be detected and the system driven to a known �safe� state where no harm can be done. If 
the system could correct the error and keep working, then it would be called fault-tolerant 
(which is not the case). The new diagram is equivalent in the sense that its behaviour is 
identical from an external point of view. 

3. Algorithm process 

 The initial structure from which all the rest derive is the starting state diagram. Figure 3a 
shows an example of a state diagram data structure for a Petri net. That information is 
stored in a structure formed by three object lists. The first is the list of places or states, the 
second is the list of transitions and the third is the list of the connections between places 
and transitions. The handling of the information is best achieved using an object oriented 
programming language. The hierarchy of the objects involved in the treatment of the 
specification is shown in figure 2, where objects in double boxes form the data structure, 
while the simple boxes are objects defined to inherit the properties provided by the 
programming language. 

Tlugar defines the places and Ttransicion the transitions in the Petri net. TVar_ES is 
dedicated to input/output signals. TPuntero and inherited objects are pointers that relate all 
the structure. TPetriNet contains, with the help of all the other definitions, the information 
of the whole Petri net. 

In the case of a state diagram, the information to store and the process to follow is 
simplified. The structure is first processed to obtain a state array, searching in the structure 
for every state its predecessor. This array is transformed as per [1] to get a new state array 
(see figure 1). This new state array is stored in a new class of objects from which the VHDL 
is generated. Since the process multiplies the number of states, it may be necessary to 
compress the information in memory. 

State array 
generation 

State 
array 

Algorithm 
optimization 

Fail-safe 
VHDL 

description 

Petri net 
specification 

Unsafe VHDL 
description 

Fig. 1.Block diagram of the proposed methods 



 

 

In the case of a Petri net, the process starts by transforming it in an equivalent state 
diagram, trying all the transitions between the places that can form a state, even if most will 
never happen. For a Petri net with 10 places, the equivalent state diagram can have at most 
2 to the power of 10 states. That will make a 1024x1024-state array that if necessary to 
duplicate in the fail-safe version will make 2048x2048, forcing a compression of the 
information. The compression algorithm is facilitated by the fact that most of the values of 
the array will be �0�s. 

The application program identifies whether it is working with a Petri net or a pure state 
diagram, but uses the same data structure. If there is a transition associated to several 
places, coming from or leading to the transition, the structure is processed as a Petri net. 
Petri nets are encoded using one-hot encoding. State diagrams are encoded using binary 
codification. The number of bits used to code each state in this last case follows:   

number_of_bits = exc( log2( number_of_states ) ) (1) 

where exc ( x ) means rounded up. 

Fig. 2. Data structure 

Fig. 3. Example



 

4. Examples 

Figure 3a shows a state diagram, list 1 its VHDL entity description, list 2 the unsafe version 
and list 3 the results obtained after been transformed by the algorithm into a fail-safe VHDL 
description (see figure 3b). Observe that it was necessary to duplicate the number of states 
to obtain the required parity alternation. 
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List 1 

 

 
-- Entity description of Petri net example 
Entity Example is   
Port (     
clk: In std_logic;     
INIT: In Std_logic;     
B, C, D, E: In Std_logic;     
X,Y: Out Std_logic  ); 
end Example; 
 

 

 

List 2 

 

 
-- Unsafe architecture 
architecture unsafe of Example is 
--Biestables for detecting transition activated inputs 
Signal  ant_B, ant_C:  Std_logic; 
-- Current state register 
Signal  current_state: Integer range 0 to 3; 
  
begin 
-- Descriptions of the transitions  
transic: process 
begin -- Only with a positive transition in clk   
wait until (clk’event and clk=’1’);   
if INIT = ’0’ then current_state <= 2 ;  --Init. signal 
else    
case current_state is 
-- state 0        
when 0 =>  current_state <= 2 ; 
 
-- state 1        
when 1 => if C=’0’ then current_state <= 0 ; end if; 
 
-- state 2       
when 2 =>         
if ( (B=’1’) and (ant_B=’0’) ) or ( (C=’0’) and (ant_C=’1’) ) 
then  current_state <= 3 ;  end if;         
if ( B=’0’ ) or ( D=’1’ ) then current_state <= 1;  end if; 
 
-- state 3        
when 3 =>  if ( (B=’1’) and (C=’0’) ) or ( (E=’1’) and (C=’1’) 
)  
then  current_state <= 2 ;   end if;        
 
when others => null;     
 
end case;   
end if; 
end process; 
 
-- Description of the outputs  
salidas: process 
begin   
wait until clk’event and clk=’1’; 
case current_state is        
when 0 =>  Y <= ’0’;       
when 1 =>  X <= ’1’;        
when others => null;   
end case; 
end process; 
 
-- Description of transition activated inputs  
flancos: process 
begin -- Only with a positive transition in clk   
wait until clk’event and clk=’1’;   
ant_B <= B;  ant_C <= C; 
end process;  
end unsafe; 
 
 



 

 
List 3 
 
 
architecture safe of Example is 
--Biestables for detecting transition activated inputs 
Signal  ant_B, ant_C:  Std_logic; 
-- Current state register 
Signal  current_state: Integer range 0 to 7; 
 
begin 
 -- Description of the transitions  
transic: process 
begin -- Only with a positive transition in clk   
wait until clk’event and clk=’1’;   
 
if INIT = ’0’ then current_state <= 2;  -- Init. signal 
else  
case current_state is 
 
-- state 0        
when 0 =>  current_state <= 2 ; 
 
-- state 1       
when 1 => if C=’0’then current_state <= 0 ; 
else current_state <= 5 ;   end if; 
 
-- state 2        
when 2 =>         
if ((B=’1’) and (ant_B=’0’)) or ((C=’0’) and (ant_C=’1’)) 
then current_state <= 3 ;         
elsif (B=’0’) or (D=’1’)then current_state <= 5 ;         
else  current_state <= 6 ;  end if; 
 
-- state 3       
when 3 => if((B=’1’) and(C=’0’)) or((E=’1’) and(C=’1’)) 
then current_state <= 2 ;         
else current_state <= 7 ;    end if; 
 
-- state 4       
when 4 =>  current_state <= 6 ; 
 
-- state 5       
when 5 => if C=’0’ then current_state <= 4 ;        
else current_state <= 1 ;  end if; 
 
-- state 6       
when 6 =>   if(B=’0’) or(D=’1’) then current_state <= 1 ;      
elsif ( (B=’1’) and (ant_B=’0’) ) or ((C=’0’) and (ant_C=’1’) 
) then current_state <= 7 ;         
else current_state <= 2 ;  end if; 
 
-- state 7        
when 7 =>  if ( (B=’1’) and(C=’0’) ) or( (E=’1’) and(C=’1’) ) 
then current_state <= 6 ;  
else current_state <= 3 ;   end if;       
  
when others => null;    
end case;   
end if; 
end process; 
 
 -- Descriptions of the outputs 
 salidas : process 
begin  --Only with a positive transition in clk  
 wait until clk’event and clk=’1’;   
case current_state is        
when 0 =>  Y <= ’0’;        
when 1 =>  X <= ’1’;        
when 4 =>  Y <= ’0’;        

when 5 =>  X <= ’1’;       
when others => null;   
end case; 
end process;  
 
-- Description of transition activated inputs  
flancos: process 
begin 
-- Only with a positive transition in clk   
wait until clk’event and clk=’1’;  
 ant_B <= B;  ant_C <= C; 
end process; 
  
end safe; 
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Abstract. Today’s sophisticated digital designs are rapidly evolving. Software-only 
simulation of such designs takes weeks or even months. Therefore a new 
generation of chip design requires a hardware-assisted solution. Hardware 
acceleration delivers a 10-1000 times performance boost. In the paper technologies of 
hardware simulation on selected examples are described. 
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1. INTRODUCTION 
The designs are rapidly evolving, doubling in size with each generation and heading to tens 
million gates by 2002. This causes dramatic increase of the simulation run time. It is harder 
and harder to simulate designs because the simulation time has increased from minutes and 
hours to days and weeks. Therefore, the days of being able to verify ASICs and system-on-a-
chip (SoC) designs through software-only simulation are over. Simulation assisted by special 
hardware is the best solution for speeding up the simulation of large design sections that have 
been tested and accepted by RTL simulations. 

In the paper the three selected examples of hardware simulators are discussed. In addition, an 
analysis of software-only and hardware accelerated simulation of example complex design is 
described.  

2. DESIGN VERIFICATION 
A verification of SoC was time consuming because there were no fast RTL simulators and 
easy to use hardware emulators. The existing hardware accelerators for gate level design 
verification require extensive set-ups, good design understanding, lengthy compilations and 
tedious design partitioning into multiple FPGA devices. Companies involved in large SoC 
designs with critical time-to-market demands use this technology. It is not for the entry-level 
designers working with a limited budget. 

The new RTL code hardware accelerators hold some promise but it is alleged that they 
involve lengthy compilations. They also do handle neither mixed VHDL/Verilog, nor very 



large designs. Also, some IP cores come in EDIF or other proprietary formats and they need 
to be simulated outside those RTL accelerators. Until now there hasn’t been a simple and 
universal tool or method that would accelerate verification of both RTL code and netlist-based 
(gate level) IP cores [10]. 

Figure 1 shows current design prototyping process [12]. At the beginning a designer prepares 
module A that is verified in simulator. Then he can create module B. When module B is ready, 
it is verified as a separate module and then with the rest of the design, and so on. This process 
is called also incremental prototyping. However the described process takes hours and even 
days. Current designs consists of several millions gates, so the simulation takes too much 
time. Therefore CAD companies introduced new technology – hardware accelerated 
simulation. 

 Module A 
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Module BSimulation
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Simulation 

Module CSimulation
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Fig. 1. Current design verification process 

3. HARDWARE ACCELERATED SIMULATION TECHNOLOGY 
Hardware simulation is a technology that allows speed up simulation time, turning weeks or 
months of simulation into days or even hours. Designer can “push” whole or a part of the 
design into hardware. Because it is rather a new technology every solution is different and has 
different features. Some vendors produce only hardware simulators, others manufacture 
hardware and also software simulators. 

3.1. Xcite-2000 (Axis Systems, Inc.) 
Xcite-2000 [3] is the simulation acceleration technology. Xcite-2000 preserves the native 
simulation-debugging environment. With its Re-Configurable Computing (RCC) technology, 
Xcite-2000 offers simulation performance up to 100K cycles/second on a design capacity up 
to 10 million ASIC gates. 

Transparent Simulation access to RCC Architecture for Xcite-2000 integrates software and 
hardware into one unified package. The hardware contains a Re-Configurable Computer 
(RCC) composed of the Altera FPGA Flex [2]. Xcite-2000 RCC directly connects with the 
workstation via one set of PCI extender. Whether the system design is described at the 



behavioural, RTL or gate level, the Xcite-2000 compiler custom configures its computing 
elements to maximize parallel processing. Thus, design simulation with Xcite-2000 is 
identical to software simulation at hardware speed. 

Design description can be separated into three components: behavioural, RTL and gates. The 
Xcite compiler automatically maps sections, which can be RCC accelerated (RTL and gate 
level components) and builds a native compiled simulation image for behavioural sections, 
which need to stay within the Axis software simulator, Xsim. Using "Hierarchy Extracted" 
mapping technique, the Xcite compiler automatically maps the design onto arrays of FPGAs. 

One of the unique capabilities of Xcite-2000 is its ability to swap software and RCC state in 
real time. Thus during simulation, the user may choose to swap all RCC state into Xsim in 
order to debug the design and continue software simulation. Once the circuit is fully 
diagnosed, simulation state value can be swapped back into RCC for maximum performance 
acceleration. 

Within Xcite RCC simulation, simulation history for all nodes is compressed within RCC and 
stored onto the workstation. Either during or after simulation, the Xcite VCD-on-Demand 
capability can extract all node history values without re-simulation. Thus design debugging 
has become highly efficient without the high cost of disk storage or simulation slowdown. 

3.2. Viking CSM (IKOS Systems, Inc.) 
The Viking CSM [5] co-simulator offers hardware accelerated simulation performance for 
verification of VHDL designs on the ModelSim software simulator from Model Technology, 
(MTI) [7]. The Viking CSM system delivers mixed-level acceleration through a tight 
integration of the ModelSim software with the NSIM and ARES hardware accelerators from 
IKOS.  

Users work with their existing verification environment, workflow and language, using the 
same simulation test-benches to accelerate their designs. Viking CSM extends the command 
set and GUI capabilities of ModelSim’s to support IKOS’ accelerators. The product also 
allows the Foreign Language Interface (FLI) to ensure that Viking CSM will integrate 
properly with the user's systems and all peripheral tools. 

Viking CSM offers also designers access to the debug capabilities of ModelSim without 
having to switch between different software and hardware environments.  

The NSIM is an event-based hardware accelerator. This proven technology is based on a 
massively parallel, hyper-cube architecture optimised for event-driven simulation. Large 
designs are automatically partitioned across parallel custom simulation processors or 
"clusters" to achieve the accelerated speeds. ARES is a very affordable desktop accelerator 
based on the proven NSIM architecture, but is optimised specifically for RTL acceleration 
and comes bundled with software. 

3.3. Hardware Embedded Simulation (Aldec, Inc.) 
Hardware Embedded Simulation (HES) [1] is the technology that facilitates the incremental 
design verification of FPGA and ASIC devices while speeding up design verification. HES 
technology allows you to download selected modules of your design into an FPGA and 
perform hardware-software co-simulation. After a design block has been verified at the 
behavioral level, it is synthesized, implemented and downloaded into an FPGA residing on an 
accelerator board. HES technology supports up to four acceleration boards residing in one 
computer. The boards are the PCI cards inserted into the slots of the computer.  



The entire design is simulated in the HES environment, which consists of an HDL software 
simulator and PCI boards. This environment assures correct communication between modules 
located in silicon and modules simulated in software. 

Using the HES technology, verified modules of the design can be put into silicon after the 
synthesis of even a small part of the design. User needs to synthesize the modules that should 
be pushed into silicon, and the HES Design Verification Manager (DVM) will help to 
configure HES environment.  

Aldec’s simulator is based on the Incremental Prototyping. Figure 2 shows the idea of 
Incremental Prototyping. When module A is finished, it is synthesized and implemented and 
finally downloaded to the HES board. Since module A resides in the hardware simulator, the 
designer can prototype module B in software. When module B is verified successfully at the 
software level, it goes thru incremental synthesis and incremental place and route processes. 
Note that since module A now resides in the hardware, it is not synthesized and implemented 
again. 
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Fig. 2. Hardware acceerated design simulation process 

HES boards have been built with Xilinx FPGA Virtex [11] or Altera CPLD Apex [2] devices. 
They are placed on the PCI board that can be put into the slot of the PC or Sun computer.  

Aldec’s hardware simulator works on the following platforms and configurations: 
• Solaris (Sun) with MTI, Cadence [4], or Riviera simulators [1]; 
• Linux/Unix (PC) with Cadence, or Riviera simulators; 
• Windows NT/2000 (PC) with MTI, or Active-HDL simulators [1]. 

3.4. Summary 
Table 1 shows the summary of the selected hardware accelerators. Information about other 
solutions is described, for example, on [5,11]. 

Table 1. Summary of hardware accelerator  
Feature HES Xcite-2000 Viking CMS 

Real simulation YES YES YES 
Maximum Capacity 2,5 mln gates 1 mln gates ? 

Used Chip(s) Xilinx – Virtex 
Altera - Apex Altera - Flex Xilinx – Virtex  

Supported Languages Verilog, VHDL, EDIF netlist Verilog VHDL 

Supported Simulators Active-HDL, Riviera, ModelSim, 
Verilog XL/ NC-Sim Xsim ModelSim 

Platforms PC, SUN SUN SUN 
Supported Operating 
Systems Windows, Linux, Solaris Solaris Solaris 



4. DESIGN EXAMPLE 
This section shows the benefits of hardware simulation. The following results are based on a 
comparison between software and hardware simulation. The following example is based on 
using Aldec’s software simulator (Active-HDL) and hardware accelerator board (Hardware 
Embedded Simulation - HES). 

As an example a system consisted of two processors MASTER and SLAVE (Fig. 3). The 
design is a part of a bigger, hypothetical digital system, where data are processed in various 
ways. The purpose of these blocks is to process input data, and subsequently to send the result 
of processing to another module. The way that data are processed is not important for 
considered analysis. Since data can be transmitted from one module to another in an 
encrypted format, the design must be able to decrypt encrypted data. The first part (MASTER 
block) is responsible for data processing and communication with the rest of the system. The 
second part (SLAVE block) is responsible only for data encryption and decryption. Both 
blocks are modelled in Verilog-HDL [6]. Programming Language Interface (PLI) [8], a part 
of Verilog 1364-1995 standard (or a new, updated version – Verilog 1364-2001) is used for 
implementation of data exchange between the hardware and the software. 
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Fig. 3. Block diagram of an example system 

When the MASTER block of the design is ready it is verified in software. The software 
verification of this Master block takes approximately 45 minutes. Next the SLAVE block is 
developed in software and also verified. The verification of the SLAVE block takes 
approximately 30 minutes. Verification of entire design is completed in approximately one 
hour and 15 minutes. Now if the design is not working properly it should be corrected and re-
verified, repeating the entire cycle over again until the design is correctly verified in software. 
Conversely, this reiterative process can take weeks or even months. 

Using HES hardware, the MASTER block is “pushed” into hardware after correct software 
verification. When the verification process is run again, the MASTER block will now simulate 
and verify in approximately 15 seconds versus 45 minutes. Next the SLAVE block is 
developed in software. Simulation and verification of this block takes 30 minutes in software. 
But when simulation and verification of both blocks is run again, verification of the entire 
design is completed in 30 minutes and 15 seconds. There is a noticeable decrease in time due 
to the MASTER block residing in hardware. Once the SLAVE block is verified correctly in 
software, it is “pushed” into the hardware, as well. The two blocks now reside in hardware. 



The next simulation of the two blocks takes place in hardware, and the whole design is 
completed in 25 seconds (15 seconds for the MASTER and 10 seconds for the SLAVE block). 

Table 2 shows times of hardware and software simulation for the considered design. 

Table 2. Hardware vs. software simulation 

Part of system Software simulation 
[min] 

Hardware accelerated 
simulation 

[sec] 

Software vs. Hardware 
[times] 

1. Master Block 45 17 159 

2. Slave Block 30 10 180 

3. The whole system 75 27 167 

5. SUMMARY  
Present digital designs are bigger and bigger. Very often simulation of such designs takes not 
only minutes and hours, but whole days or even weeks. The best solution for this problem 
seems to be hardware accelerated simulation. After finishing the design at the RTL level, a 
user can push it into a real device and do simulation or emulation of the design.  

Hardware acceleration delivers a 10-1000 times performance boost. In the paper a comparison 
between only three representative examples of hardware accelerations has been presented. 
Advantage of such approach for system verification has been described on an example of a 
system that consists of master and slave processors.  
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Abstract. The automatic system of TV raster parameters tuning for television 
receivers has been worked out.  For achieving a required precision of raster 
parameters and compensation of nonlinearity and geometric distortions the 
original algorithms of image processing are used.   
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INTRODUCTION 
In modern TV receivers the problem of digital control such parameters of a raster as a vertical 
and horizontal shift, raster size horizontal and vertical, and also number of other parameters 
digitally is very actual. All these parameters as a rule depend on parameters of the deflector 
system and electronic circuits. Unfortunately scatter of parameters makes hard influence on 
characteristics of a displayed raster, that stimulates a problem of raster parameters tuning on 
the base of computer. In the industrial conditions this problem is executed by specially trained 
expert, who manually reduces distortions of a raster to a minimum. The development of 
automatic system for TV raster parameters tuning without human participation allows to reach 
required minimum distorsions of the raster and essentially reduce time of tuning. The created 
closed system satisfies the requirements for the computer vision systems and includes original 
algorithms of image processing, approximation of nonlinearities on the base of Volterra series 
and neural network approach. 

1.  METHODS AND ALGORITHMS OF TV RASTER IMAGE PROCESSING  
For TV raster image capture the CCD colour video camera "Sanyo" has been used and the 
resolution of an obtained image is equal to 640x480. Unfortunately using of the video camera 
calls a number of problems connected with decrease image quality for TV raster. Since the 
video camera has an automatic system of image brightness adjustment, it results in the certain 
delay for obtaining an image. Furthermore brightness of separate areas of an image is received 



unequal because of the nonlinear distortions of the raster are present, and obtained image also 
can be hardly noised. 
We have considered and tested various methods of image preprocessing such as a median and 
Gaussian filtration. As experiments have shown fast and qualitative outcomes Gaussian 
filtration with a size of the window 3х3 has shown. It allows to smooth some noise added into 
an image by an equipment and the external factors of illumination. 
Further the histogram of image intensity is created, which has been used in future for 
determination of an average level of light exposure for image and calculation of black and 
white levels. 

2.  COMPENSATION OF DISTORTIONS 
The image of the same grid field to be captured with CCD-camera and frame grabber depends 
on a lot of factors, such as curvature of the TV-screen surface, variable distance from the 
screen up to the CCD-camera, orientation angles of view point, geometrical and metric 
distortions, entered by the optics-electronic section.  Each of the factors makes the specific 
distortions to the image of a grid. 
All significant distortions from the point of view of the precision of parameter measurement 
are divided on two classes.  The first one includes distortions, caused by an relative location 
and orientation of the CCD-camera and the TV-receiver.  The second one includes distortions 
caused by a CCD-camera lens construction and lens mounting system and distortions caused 
by optics-electronic channel "CCD matrix image - memory image". 
The model of second class distortions  describes real geometrical distortions, which take place 
in a specific opto-mechanical state of real lens.  The model uses two representations of 
distortions field.  The first one is based on spline approximation and second one is based on 
polynomial approximation that is usually used by some optics manufacturers and its 
parameters are listed in the product manual. 
The construction of spline model of lens distortion field is carried out on the basis of 
experimentally received data for every lens, particular opto-electronic path of the CCD-
camera and coder/decoder circuits of capture board.  Planar grid was used as the standard 
object to form the curved and distorted image in computer memory.  The specially developed 
technique of the image processing of this planar grid is used.  As a result the set of 
approximation data corresponding to distinct states of the lens was received. 
To determine the relative location of the CCD-camera and TV-set the vectorization of light 
screen boundaries is carried out. The curve spline representation of that boundary is used to 
find the coordinate system transformation that minimizes variation of source object boundary. 
That transformation is used to compensate distortions related with non-focal view point 
location. To determine the current distance between camera lens and surface of the TV-set we 
have used angular dimensions of the screen.  
The distortions are compensated in consecutive order, at first distortions caused by objective 
and opto-electronic section, then distortions caused by relative arrangement.  Further after all 
distortions have been compensated the grid detection is carried out and signal frame center is 
found.  After vectorization of the grid image distortions entered by TV-set deflector system 
are evaluated. 



 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The compensated image of the TV set raster and point of knots of vectorial representation. 
 
 The Fig. 1 shows one from stages of a vectorization of the compensated image. 

 
3.  IMAGE PROCESSING FOR SELECTION OF KEY DETAILSES 
A primary problem of image analysis is determination of knots of an image grid. For 
determination of lines on an image the original filtration algorithm based on multilayer 
perceptron is used. The source vector that contains 25 values was generated as a residual of 
intensities between adjacent pixels of an image. Neural network was used to increase 
visibility of lines. The application of the given method has increased performance if 
previously trained neural network was applied. Neural network recognizes in the processed 
image a fragment of a standard line of a grid and produces coordinates of that fragment in the 
vector. This coordinate was used for the recognition of the line fragment in the source vector. 
For neural network training back-propagation algorithm with an adaptive learning step has 
been used. [1, 4] 

4.  APROXIMATION OF NONLINEARITIES 
Further  an obtained knots allow the calculation of geometric and nonlinear distortions of the 
raster. It should be noted that evaluation of nonlinear distortions is nontrivial problem. There 
is a set of methods and approaches to decide this problem. For calculation of vertical 
nonlinearity, the set of knots on the central vertical line was used. We have used the 
approximation of obtained points via polynomial of the n degree, where the n is maximum 
order of existing nonlinearity. 
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In practice it is sufficient to calculate nonlinearities up to the third order (n=3). The 
coefficient of the second order (a2) corresponds to nonsymmetry, and third order (a3) - to 
nonlinearity. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During experiments (fig.2) we have clarified that nonlinearity and nonsymmetry are 
correlated with each other and are non-correlated with the next tuning parameters (horizontal 
position and vertical size of a raster). 
Another approach to calculate the nonlinearity and nonsymmetry values is using a Volterra 
kernels. The Volterra series is a well-known method of nonlinear system describing. The 
Volterra approach characterises a system as mapping betwen two function spaces of that 
system. The Volterra series is an extension of Taylor series representation to cover dynamic 
systems and has the general form 
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where y(t) is the output of the system at time t, u(t) is the input at time t, and hn(τ1,…,τn) is the 
n-th order Volterra kernel. 
For a practical systems with finite memory the equation becomes 
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where T is the memory of the system (i.e. the number of time sampled values to be needed to 
describe the dynamics of the system). 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Experimental data of the grid knots coordinates on the 
raster for an evaluation of nonlinear distortions. 
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Fig.3  A neural network architecture for time series prediction. 
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This network (fig.3) is trained to perform a certain mapping between its input layer (on the 
left) and its output by altering the weights associated with each internal connection. These 
weights are altered by a training algorithm which takes pairs of ideal input/output data and 
changes the weights to make the network reproduce the mapping described by the data pairs. 
A typical node processing function is 
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where opi is the output from the hidden unit i, σi is the activation function of hidden unit i, wji 
is the weight connecting input unit j to hidden unit i, u(t-j) is the input u at delay j, bi is the 
bias input to unit i, and N+1 is the number of input units. A typical output function, σ, is  of 
sigmoidal shape such as hyperbolic tangent (tanh x). 
The Volterra kernels are given by 
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and so the general n-th order kernel is given by 
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When network has been trained, then the Volterra kernels of all dimensions of this system can 
be extracted. 
In the results the network was trained with the training data set from the TV raster grid nodes, 
using with the back-propagation algorithm. 
So, as we have found the Volterra kernels of 2-nd and 3-rd order are corresponds to such 
control parameters of TV raster as nonsymmetry and nonlinearity. 
 

5.  EXPERIMENTAL INSTALLATION 
As controlled and tuned object some serial TV-sets supplied with spherical or toroidal tube 
were have been used.  All these TV-sets had digitally controlled deflector system and were 
equipped with external data link. 
Hardware equipment of the experimental installation consists of the personal computer under 
OS/2 Warp v.4, CCD-camera and PCI video-capture board. To form the grid field with a TV-
frame center mark on the surface of TV tube precise test pattern generator was used.  Some 
the CCD cameras, capture boards and lens systems have been investigated to determine 
minimal resolution that allow to evaluate the distortions of raster with accuracy that is 
necessary the raster to be tuned.  To reach  large non-linearity and non-symmetry of the 
vertical and horizontal scanning with the purpose of checking the limits of the control 
algorithm some special changes were brought in to the electronic circuits of the deflection 
system. The experimental installation is shown on fig.5. 



 
Fig. 5. Structure of an experimental system of automatic TV raster parameters tuning. 

1 - CCD the camera; 2- chassis; 3 - generator of a standard signal; 4 - TV set; 5 - control computer. 
 
 
CONCLUSION 
The developed system satisfies to required requests, on quality of set-up for parameters of the 
raster. The system has shown a high accuracy and performance of tuning, on a comparison 
with tuning with the help of expert by a manual method. As a rule system defines all the 
parameters of a raster less than for 25-30 seconds, while the person for entering in control 
mode, makes tuning at the best 1-2 minutes. And in case of tuning by the person could be 
quality defects. 
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Abstract. In the present paper realisation of resource arbiter for RETINA image processing module 
has been described. The 32-bit RETINA module is used for image acquisition, processing and 
analysis.  The module's resources include A/C converter, Virtex FPGA device, Motorola 96002 
floating-point DSP device and PCI Master interface and they allow real-time realisation of those 
operations. Resource arbiter is an important control block of the module. It is responsible for the 
resource allocation for the main control elements of the module, it arbitrates the allocation of 
internal and external buses, and keeps the information concerning the system state. 

Key Words. arbiter, real-time, FPGA, re-configurable computing, image processing 

1. INTRODUCTION 

The technological progress in the field of production of FPGA devices in the last two years, 
oriented towards tailoring of the resources of FPGA devices for the needs of digital image 
processing, makes possible realisations of hardware or software-hardware vision systems. The 
mostly widespread way of realisation of digital image processing algorithms is the software 
method [1][2][3][4]. The software's basic advantage is the possibility of convenient and 
flexible realisation of the algorithm. Because of the high calculational complexity of the 
image processing algorithms their software realisation is not always efficient enough to allow 
the algorithm's work in real time. Therefore search continues for multiprocessor architectures 
[5], hardware methods [6][7] and software-hardware methods [8][9] speeding up the 
execution of calculations. Great popularity has been achieved by the realisation of image 
processing and analysis algorithms in DSP [10][11] and specialised or dedicated hardware 
processors [12][13]. Many attempts have been made of realisation in complex, multiprocessor 
architecture [5][7][8]. Solution earning a steadily growing popularity is the implementation of 
processing algorithms, and recently also image analysis algorithms, in reprogrammable 
devices [12][13][14][15]. 
Essential advantages of the FPGA-based architectures for image processing are their 
flexibility, efficiency and structural adaptation to tasks consisting of multiple and parallel 
execution of algorithms for relatively simple data like image pixels. 
In the present paper heterogeneous architecture has been shown, in which a single FPGA chip 
of high densities has been used both for realisation of the image processing and controlling 
the resources of the device itself. The paper contains the discussion of architecture and 



working modes of that part of the implemented FPGA chip, which realises the function of the 
resource arbiter for the constructed image processing system.  

2. THE ARCHITECTURE OF THE RETINA HETEROGENEOUS IMAGE PROCESSING SYSTEM. 

The 32-bit architecture of heterogeneous image processing system is based on Virtex device 
working in co-operation with 96002 floating point DSP. The board is equipped with high-
speed analogue to digital converter, several memory blocks, real-time clock and 32-bit PCI 
Master interface (AMCC). The Virtex chip combines two functions. It contains all the 
necessary control logic (FPGA Controller) and is used for performing the image processing 
operations (Video Processor) - see Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The architecture of heterogeneous image processing system. 

The board contains three that can be treated as master devices - DSP96002, Video Processor 
and PC (through AMCC chip). Optimising the data transfer between the master devices and 
memory blocks was an essential goal of implementation of the FPGA Controller. 
The FPGA Controller (Fig.2) consists of four modules - three dedicated local sub-controllers 
(Video Processor Controller, DSP Controller and AMCC Controller) and the resource arbiter 
module. The local sub-controllers are responsible for local arbitration and matching signals 
between devices. Therefore parallel work is enabled. Resource arbiter controls the data 
transfers between master devices. 

3. RESOURCE ARBITER MODULE 

The proposed resource arbiter module enables data exchange between master devices and 
synchronises their access to memory resources of the module. It enables various arbitration 
schemes (e.g. token ring), and due to that the possibility of conflict occurrence between 
devices with "master" privileges. It also enables flexible management of the data transfer by 
application of two types of device priorities - global and local. If necessary the arbiter's 
configuration can be changed by using the possibility of reconfiguration of the FPGA Virtex 
device. 
The system bus arbiter module (see Fig.2 - module D) consists of the following elements: 

• the resource arbiter (RA) itself 
• configuration registers (FPGA Registers) 

ADC 
Bus 

Global Bus 

ADC 
Converter 

AMCC Bus 

AMCC Controller 
 (PC Interface) 

Video Processor 

Retina SRAM Address Transcoder

DSP SRAM 

RS-232 

RTC 

EPROM 

 
DSP 

FPGA controller
FPGA 

Video 
 in 

Port B 

Ext. clock 

PCI bus RS 

DSP   
Bus 



• buses: FPGA Bus1,2,3 and Internal Bus 
• additional arbitration signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  General layout of the controller. 

The resource arbiter makes use of the configuration registers, containing the information on 
the priorities controlling the interrupts and control semaphores governing the arbitration, 
attributed to particular modules. Their state is mapped to local address spaces, what allows an 
independent access in any moment - with an essential restriction for the DSP block, when the 
external global bus is being used by another device. The configuration registers are directly 
connected with local controllers via FPGA Buses 1,2,3. The resource arbiter also obtains, due 
to dedicated controllers, various control signals (e.g. interrupts) and the remaining arbitration 
signals - allowing supervision over the functioning of every "master" device (e.g. reclaiming 
some resources). 

4. THE ARCHITECTURE OF RESOURCE ARBITER. 

The architecture of the Resource Arbiter provides the possibility of taking full advantage of 
module's resources. The introduction of co-operation of three devices provided with potential 
possibility of work in "master" mode leads to the necessity of ensuring sufficient resources, 
allowing the device's work in various configurations.  The application of the FPGA device 
allows changes of the control module's infrastructure to be realised fully in hardware, in order 
to provide the possibility of the device's work in various modes and configurations.  
Resource Arbiter consists of the following blocks (see Fig.3): 

• Arbitration Unit (AU) - the main control unit of the arbiter, responsible for conflict 
arbitration and management of the modules resources, containing the Grant Register 
storing information about intermodular transfers currently taking place;   

• Global Arbitration Logic (GAL) - the block co-operating with local arbitration 
systems; 

• Interrupt Controller (IC); 
• Control Unit (CU) - the unit generating the clock signals and RESET signals; 
• Watch Dog (WD) - the block containing timers, used for supervision of the 

correctness of particular module blocks functioning; 
• Additional Logic - additional auxiliary chips, not included in the block diagram. 
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Local Arbitration Logic systems have been related with every master devices. The LAL's take 
over the local arbitration tasks from RA, while the Resource Arbiter synchronises the data 
transfer between the modules. The arbitration, because of the specific features of the DSP, has 
been realised in software-hardware manner and it is based on solutions applied in PCI and 
DSP96002 processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Layout of the Resource Arbiter. 

For configuration and setting of the arbiter's working modes control flags semaphores have 
been used, located in configuration registers (FPGA Registers): 

• Interrupt Register (8-bit) - the respective bits of the register are responsible for 
masking the interrupts, which inform the local "master" devices about allocation of the 
required resources; 

• Priority Register (8-bit) - store the information about local and global priorities; 
• Request/Acknowledge Register (3x3-bity + 1 bit) - contains the respective semaphores 

controlling the arbitration; 
• Auxiliary Registers; 

4. FUNCTIONING OF THE RESOURCE ARBITER 

The operation of the Resource Arbiter should be analysed taking into account the working 
algorithms of the Local Arbitration Logic systems (LAL's), which take over the local 
arbitration task from the RA. 
The work cycle of the arbitration systems can be divided into several stages, which are 
supervised by the Control Unit (CU), responsible also for initialisation (RESET) of the 
module and generation of the clock signals. Division of the work cycle into phases allows the 
elimination of changes of the FPGA Registers contents during the Resource Arbiter's work, 
what might lead to irregularities of its functioning. During the arbitration cycle the following 
phases can be distinguished (see Fig.4): 
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Figure 4. Phases of the arbitration cycle. 

• Phase 0 - Writing to FPGA Register by the "master" devices (setting the semaphores) - 
requests for intermodular transfers (optional phase). 

• Phase 1 - Start of the arbitration in the Arbiter system - collection of the information 
concerning requests, priorities from the FPGA Registers. In absence of Phase 0 
initialisation of the Grant Register 

• Phase 2 - Resolving the conflicts in the AU unit. Setting of appropriate resource 
allocation signals for the GAL system and reservation of the internal bus. 

• Phase 3 - Negotiation of the resources reclaiming from the current user (its GAL block 
and local LAL system). After regaining control over the resources - setting the 
confirmation signal for the initiator. Possible storage of local resources reclaim 
requests, generated by the previous user 

• Phase 4 - Realisation of the intermodular transfer (optional phase) - reception of 
information concerns the allocation of Internal Bus. Bus reclaiming after finishing the 
transfer.  

5. CONCLUSIONS. 

The only possibility of fulfilling all the requirements that should be met by the Resource 
Arbiter of the RETINA image processing module, was its implementation in the 
reprogrammable FPGA device.  Such a solution allows the realisation of flexible and 
changeable arbiter structure fully in hardware. It provides a possibility of module adaptation 
for realisation of various arbitration procedures. The important thing is the possibility of 
configuration of the FPGA's internal memory resources as the module's configuration 
registers. The hardware implementation ensures great operation speed and high integration 
level of the arbiter's structure. There is also a possibility to adapt the device's structure to 
specific algorithms implemented in the system during its usage by the end-user. 
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The possibility of gradual development of the arbiter's structure during the prototype's testing 
should be also highly appreciated. The resources of the FPGA device allow a construction of 
additional modules, supporting the developing process of the arbiter and the FPGA module as 
a whole. Flexible FPGA structure opens a series of possibilities of RETINA module testing 
and monitoring of its co-operation with external systems via the PCI bus and serial port.  
The implementation has been done in Xilinx Virtex XCV 300BG432-6 device.  A prototype 
of the RETINA card is supplied with BGA432 socket, so XCV800E is considered as a final 
implementation platform.  
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Abstract. The architecture of “neocognitron” neural network in the task of 
search of structural units on a gray scale image of an integrated circuit is 
considered. The updated rule for activation of the network neurons invariant to 
distortions of brightness is represented. The comparative outcomes of recognition 
have shown an advantage of neural network approach.  
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1. INTRODUCTION 
At present time different kinds of neural networks are applied in the tasks of recognition and 
image analysis [1, 2, 7, 8]. In the report the search technology on a gray-scale photosnapshot 
of a chip of an integrated circuit (IC) and its structural units on the basis of the multilayer 
“neocognitron” neural network [3-6] has been represented. The search algorithm of a separate 
unit on the image IC is realized by a scanning method of this image by the sliding window, 
where for each position of the window the fitness measure of the image in the window with 
the image of a required unit IC is defined. The multilayer neural network of the simplified 
“neocognitron” architecture with the modified algorithm of training has been applied for 
calculation of fitness measure. 

2. ARCHITECTURE OF THE NEURAL NETWORK. 
The common scheme of the neural network architecture is represented in a fig.1. In structure 
“neocognitron” let us select the following units: R-layers, S-layers, C-layers, S -sublayers, C -
sublayers, S~ -neurons, C~ -neurons, S

�

-links, C
�

-links. The R-layer is receptor layer, its 
neurons do not carry any functional load and answer only for transmission of the entry image 
to the neural network. S and C-layer are outlined in a figure by a thin line, they consist of S~  



and C~ -neurons accordingly, which fulfil the function of feature detection on the image, such 
as lines, corners, intersections and etc. Everyone S and the C-layer is divided on S  and C -
sublayer, which are outlined by a thick line. S -sublayer consists of S~ -neurons, which detect 
the same feature of the image, for example, a line. Thus, S -sublayer forms some kind of a 
map of this feature in the previous layer. 

R

S1 C1

S2 C2
Sn Cn

 
Fig. 1. The common network architecture 

S~ -neurons have S
�

-links with modified weight coefficients, which accept the values during 
sublayer training. S

�

-links to be directed from one S~ -neuron form in the previous layer a 
receptor fields, which can be divided on P subgroups according to an amount C -sublayers in 
the previous layer. Each receptor field subgroup is characterized by size and position in 
previous sublayer. The size of a receptor field subgroup corresponds to a size of detected 
feature. The position of a receptor field is defined by a position of a S~ -neuron in S -sublayer, 
i.e. the position of receptor fields for neurons from one S -sublayer differs only by parallel 
shift rather each other. As the neurons from one S -sublayer detect the same feature, then it is 
possible to train only one neuron from this sublayer and use its weight coefficients for all 
remaining neurons. With the purpose of time performance optimization in terms of an amount 
of elementary mathematical operations new procedure of network training and activation 
algorithms were worked-out. In the given paper the approach based on rejection of inhibitory 
neurons using that is connected with the problem of complementary memory and 
mathematical operation, is represented. Actually for training such S-neuron the methods on 
the base of Kohonen network and radial basis functions are proposed. As a result of the 
offered approach it is possible to reduce volume of used memory for weights and also amount 
of multiplication operations in 2 times. S~ -neuron is trained on the base of function of weight 
coefficients change  
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where t is number of training iteration, w is value of weight coefficient, u is value of activity 
for the neuron on an input of link to be trained.  
The activation function of S~ -neuron corresponds to the radial basic function. 






















−+−+

=
∑ ∑

−

= ∈ ∀

N

kvwpvnUpvnU
knU

ClP

p Alv
Cl

v
Cl

Sl

1

1

2)),()),((min),((
exp),( ,  (2) 



where l is the serial number of a layer; k is the number of a trained plane; n - two-dimensional 
index of a neuron in k-th plane; w - weight coefficient of link; v - two-dimensional shift of 
entry link in a subgroup of links Al; Al - two-dimensional value describing a size of a receptor 
subgroup in previous C -sublayer, N, p, - total amount of entry links and serial number of 
sublayer to be joined with a trained neuron correspondingly. The parameter 

)),((min pvnUCl
v

+
∀

 is entered into a relation with the purpose of exception in receptor a 

subgroup of a constant component influence. This is necessary because the neural network 
mast be invariant to change of brightness for the recognized image. 
C -sublayer consists from C~ -neurons, that generalize one feature from previous sublayer. 
That is C~ -neuron realizes “or” fuzzy logic function on all neuron receptor field 

PpDlvpvnUknU SlCl ∈∀∈∀+= − ,)),,(max(),( 1 ,  (3) 

where l is serial number of a layer; p, P - serial number of a plane and set of planes from the 
previous S-layer accordingly; Dl - two-dimensional value describing sizes of C~ -neuron for a 
receptor subgroups; v - two-dimensional index of link inside these subgroups. 
Usually C~ -neurons form receptor field in one sublayer from the previous layer, or in several, 
when it is necessary to combine features to be detected by these sublayers. For example, when 
in C -sublayer the feature of brightness overfall is detected, then the links from it C -sublayer 
are necessary for installing with two S -sublayers from the previous layers, first of which 
detects feature of brightness overfall on dark, and second - with dark on bright. 
The position of receptor fields subgroups for C~ -neuron is defined similarly as for S~ -neuron. 

3. TRAINING 
The applied architecture of the neural network is outlined in fig.2,  

R

S1 C1

S2

 
Fig. 2. The used network architecture 

where a R-layer is receptor layer. The size of a receptor layer is equal to a size of an image of 
the unit of IC.  
The S1-layer is intended for detection of common features for all units of IC, such as linear 
boundaries of different orientation brightnesses overfalls. All sublayers of this layer consist of 
neurons with identical sizes of subgroups for receptor field including 4x4 neurons. The 
learning images for these sublayers are shown in a fig. 3. 

 
Fig. 3. S1-layer training images  



The C1-layer is intended for generalization of features to be detected in a S1-layer, and 
receptor subgroups of its neurons are organized to combine such pair features, as vertical 
brightness overfalls with dark on light and with light on dark. Such features are joined in fig.3 
by rectangular bracket. As result 4 sublayers in a C1-layer are obtained. The size of receptor 
field subgroups is such, that the activity of neurons from this layer was invarianted in relation 
to small shifts of features to be detected in the previous layer and makes a 2x2 field.  
The S2-layer is intended for detection of feature amount to be belonged one concrete unit of 
IC. As the S2-layer forms output value of the network, it consists of one S~ -neuron, and sizes 
of receptor field subgroups of this neuron coincides with a size C -sublayer from the previous 
layer. As the weight coefficients of this neuron keep the unique information on the required 
image, the creation of the database of IC units is possible. 
The structure of the program system is represented on fig.4 
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Fig. 4. The program system structure 

Taking into account the circumscribed above approach to creation of the architecture of the 
neural network the program system is realized that fulfils the following operations: 
1. Requests of the images samples for required units or loads the indicated architecture from a 

data base (DB) are fulfilled. 
2. The architecture for search of these units on the IC image is formed 
3. The information about this architecture of the neural network in a DB, including: a sizes 

for receptor of a layer and matrix of weight coefficients for output S~ -neuron is saved. 
4. The search of units on the IC image, with forming of the file containing coordinates of the 

locations of an indicated unit is made. 
 
 

4. TESTING 
As input data for testing the gray-scale fragments of the photo-image of IC polysilicon 

layer (fig.5) were used. 



 
Fig. 5. The IC polysilicon layer images 

Two variants of the neural network training have been produced. The learning samplings for 
these variants are represented in a fig.6 

Variant 2Variant 1  
Fig. 6. S2-layer training images 

To determine the efficiency neural network method for creation of fitness measure the 
matching with a correlation method was produced. The correlation method consists in an 
average of the image of IC unit on all learning sampling and calculation of correlation 
coefficient between the averaged image and image obtained in the moving window. The 
coefficient of correlation is evaluated in accordance with the relation: 
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where x, y are the point coordinates for the images to be compared, a, b - color value of a 
point for the averaged image and image in the moving window accordingly.  
The results of testing can be observed in the table 1. The testing has shown, that the method of 
criterion creation of similarity for two images on the base of circumscribed neural network is 
best in comparison with a correlation method these two images.  
This outcome was obtained because the neural network is invariant to distortions of the form 
and brightness of the recognized object image, and also requires a smaller amount of learning 
samples to reach necessary accuracy. 

Table 1. Testing results 
Accuracy (percent of recognition) 

Correlation method Neural network 

Size of  
learning 
sampling 

Variant 1 Variant 2 Variant 1 Variant 2 

1 63,1 67,4 87,0 89,0 

3 72,3 73,6 96,3 97,0 

6 81,4 84,2 98,5 99,0 



5. CONCLUSION 
The new algorithm for processing of gray scale IC images on the basis of the “neocognitron” 
neural network is represented. The developed algorithms were realized in computer-aided 
system for LSI circuit video image processing that will be used for reverse engineering (re-
design) of VLSI circuits as tools of layout restoring. The new neuron activation algorithm of 
the network has property of invariance to the image brightness oscillations for the recognized 
object. The advantage of neural network approach to classification of the images in matching 
with a correlation method within the framework of learning sampling size decrease and 
increase of recognition accuracy is shown. The average recognition accuracy is equal to 98,7 
%.  
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ages is offered. A distinctive feature of a method is usage the histogram analysis 
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binary image via distance transforms. 

Key Words. Earth Surface Images, Histogram Analysis, Distance Transforms, 
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INTRODUCTION 
 
In technology of updating digital maps on earth surface images the large attention is given to 
automatic and semiautomatic methods for separation of objects with the purpose of their sub-
sequent description in the vector format [1]. The process of manual outlines of a contour takes 
a lot of time therefore his full or partial automation is rather vital problem. 
 
The simplest method is usage of a histogram of brightness [2] for allocated objects. A main 
problem on this path is the overlapping of the range of histograms values for close classes ob-
jects. The method with automatic selection of a threshold with subsequent proceeding based 
on the distance transforms is offered. 
 
 
1. SELECTION OF OBJECTS WITH USAGE OF A BRIGHTNESS HISTOGRAM 
 
The histogram of object brightness has definite range of values. However pixels of a back-
ground can be distributed on all range of possible values and enough overlap values range of 
object (fig. 1, а). The offered method eliminates such uncertainty and limits range of values of 
the background in particular limits (fig. 1, b). The processing is realized in a semiautomatic 
mode and the operator selects rectangular object area at first time and then rectangular back-
ground area. The histograms of brightness are constructed on these areas. 



 
The problem of recognition thus is transformed in a problem with two classes. If the pixel be-
longs to range of values for object and does not belong to range of values for background, it 
will be identified as an object pixel. If the pixel does not belong to range of values for object, 
it will be identified as a background pixel. The task of belonging take places only when the 
pixel is in the overlapping range. In the elementary case overlapped range does not include 
into object (fig. 1, c). 

 

Fig. 1. A method to limit the range of a brightness of background: a) one class, b) two classes, 
c) recognition. 

 
Let I is the set of pixels for initial image, B ⊆ I – set of pixels of object,, G ⊆ I – set of pixels 
of a background, and Bh ⊆ [0,1,…, N] – range, which one is received by pixels of object, and 
Gh ⊆ [0,1,…, N] – range, which one is received by pixels of background, N – the maximum 
brightness to be restricted by color depth. Then pixels ixy with brightness ϕ ( ixy)  ∈ (Bh/Gh) 
will be belong to object. 
 
Such approach justifies itself if in the range of overlapping there is a great set of background 
pixels and minor quantity of object pixels. For example on fig.2, a, the input image with rec-
tangles for constructed histogram is presented. In this case the overlapping range there was 
14.47 % pixels of object and 96.79 % pixels of a background. 

 

Fig. 2. The initial map with selected rectangles for constructed histograms of object and background 
:a) forest as object and field as background, b)  deciduous forest as object and field with coniferous 

forest as background 
 

On fig. 3, a, the result of such selection is shown. On the image there are false objects and 
false background being a forest but not recognized are represented. The linear sizes of false 
areas are much less than the sizes of object. To calculate linear dimensions distance trans-
forms have been used [1,3,4]. As result the white and black areas with width lower then 
threshold are inverted. Result of such filtration is presented on fig.3, b. 
 
For a number of cartography problems it is required to recognize objects of close classes, for 
example, coniferous and deciduous forest (fig.2, b). On a fig. 4 the histograms of object (de-
ciduous forest) and background (coniferous forest and field) are shown. Thus in the over-



lapped range there is 100 % pixels for object and 97.53 % pixels for background. For this rea-
son it is offered to eliminate not all pixels of overlapping range. 

 
Fig. 3. Automatic selection of a threshold for selection of a forest: а) selection of object, b) 

filtration by distance transforms. 
 

Fig.4. The histograms for object and background 
 
 

2. SELECTION OF CLOSE CLASS OBJECTS 
 

In the overlapping range the altitude of histograms of object and background can essentially 
differ. Threshold of this ratio is used for separation object and background. Let bk is the rela-
tive quantity of the pixels of object with brightness k in total set of the pixels of object, and gk 
- relative quantity of the pixels of background with brightness k in total number of the pixels 
of background. Pixels with brightness ϕ (ixy) will belong to object if bϕ(i) / gϕ(i) > s, where s – 
given threshold. 
 
Such approach extends cases with full exception of a background and without exception. So 
for s=0 all pixels of object will be selected without excluding of a background. Really, bϕ(i) / 
gϕ(i) > 0 ⇔ bϕ(i) > 0 or ixy∈B. For s → ∞ the excluding of a background take place: as bϕ(i) / 
gϕ(i) → ∞ ⇔ gϕ(i) = 0, bϕ(i)  > 0 or ixy ∈B, ixy ∉G. S=1 corresponds to a case when quantity of 
pixels of object of the given brightness exceeds number of pixels of a background for given 
brightness: bϕ(i) / gϕ(i) > 1 ⇔ bϕ(i) > gϕ(i). 
 
The method is critical to selection of a threshold and requires high proficiency of the operator. 
The given problem was decided by automatic selection of a threshold. The experiments have 
shown that the quality selection takes place at usage of quadratic relation: 
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The calculation makes only for pixels of overlapping range. The threshold to be computed on 
the base of quadratic function is equal to 0.95. The results of selection are shown on fig. 5, a, 
where two forest areas were dedicated. However linear characteristics of these areas are vari-
ous. Using filtration algorithm based on distance transforms with specially fitted different 
thresholds for black and white areas give results shown on a fig. 5, b. Results of the selection 
of a coniferous forest are shown in a fig. 5, c, d. In overlapping range there is 99.99 % pixels 
for object and 73.01 % pixels for background and the threshold of separation is equal to 0.389. 

 

Fig. 5. Selection of the close classes objects: a) selection of a deciduous forest; b) a filtration of a 
deciduous forest; c) selection of a coniferous forest; d) a filtration of a coniferous forest. 
 

 
CONCLUSION 

 
The new method of semiautomatic selection of objects on the earth surface images is worked-
out. Distinctive features of a method is the selection of a threshold for classification and ap-
plication distance transforms for a filtration of false areas that gives opportunity for selection 
of the close class objects. 
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Abstract. This article analyses the image feature extraction task on the basis of 
Legendre moments for image recognition problem. Computation algorithm of 
Legendre moments is presented. A new method for training RBF-neural network is 
introduced. Classification results for binary images (handwritten Arabic numerals) 
are presented. On the base of classification results the recommendations for choice 
of maximal order Legendre moments and various classifiers are given. 
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function 

1. INTRODUCTION 
Succession of operations in most of digital image recognition systems can be divided into 
three stages. First stage is a preprocessing, including thresholding, improving image quality, 
segmentation and so on. Second – features extraction for avoiding data abundance and 
reducing its dimension. Third stage is a classification. During this stage class name is joint 
with unknown image by extracted features analyzes and matching its with representatives of 
the class, which the classifier has learned at a stage of training. In this article two last stages 
of digital image recognition are presented. 

2. LEGENDRE MOMENTS 
In feature extraction task considerable attention for methods that use moment functions is 
given. Moment invariant properties are investigated since sixties [4]. There are invariant on 
shifts, scaling and rotating of source object. During research time various types of moment 
functions were introduced, and fast computation algorithms for different types of moments 
were created. This part of article describes Legendre moments using for handwritten character 
(Arabic numerals) informative feature extraction. 

Two-dimensional Legendre moments for image intensive function f(x,y) defines as [6, 8]: 
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where f(x,y) – picture element with coordinates (x,y); 

P0(x)=1;   P1(x)=x;   Pk(x)=[(2k-1)xPk-1(x)-(k-1)Pk-2(x)]/k – (2) 

Legendre polynomial by power k, k>1; 

l≥0 и k≥0 defines the order of moments. 

Since definition area of Legendre polynomials is -1≤x≤1, then definition area of two-
dimensional Legendre moments is unit square, so a rectangle image of N×M pixels with 
intensity function f(i,j), 1≤i≤N, 1≤j≤M will have to be scaled the region 1≤x,y≤1, and image 
center of gravity must be located in the coordinate system origin. For this: 

– source image center of gravity (ic,jc) is computed; 

– distance D from the center of gravity to the farthest from it point of image is determined 
according to equation 

|};||,max{|:),( jjiiDji cc −−=∀  (3) 

– scaling of image is performed according to 

),(),(
D

ii
D

jjyx cc −−= . (4) 

Legendre moments to maximum order MAX_ORDER can be computed by pseudo-code: 
for k:=0 to MAX_ORDER 

for l:=0 to k 
L(k-l,l):=0 
for i:=1 to N 

for j:=1 to M 
x:=(j - jc)/D 
y:=(ic – i)/D 
L(k-l,l) := L(k-l,l) + Pk-l(x)*Pl(y)*f(i,j) 

end 
end 
L(k-l,l) := L(k-l,l)*(2k-2l+1)*(2l+1)/(N-1)/(M-1) 

end 
end

Legendre polynomials Pk(x) forms full orthogonal basis inside unit circle, so source image 
may be reconstructed from the finite number of Legendre moments as follows: 
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Fig.1 shows source binary and halftone images and reconstructed images using various 
number of Legendre moments. 



 

       
Fig.1. Source and reconstructed images using Legendre moments with maximum order 20, 40 and 60  

3. CLASSIFIER ON THE BASIS OF THE RBF-NEURAL NETWORK. 
In the tasks of classification the large attention is given to construction of classifiers on the 
basis of neural networks. Radial basis function (RBF) neural network is two-layer neural 
network offered by Moody and Darken in 1989 [5] (fig. 2). 

R1

y1

y2

yj

x1

x2

xk

t1

t2

tj

ωi,jck,i

R2

Ri  
Fig. 2. The RBF- neural network architecture 

The RBF-networks represent multilayer neural networks with RBF-neuron layer, which 
activation function correspond to the radial basic function 
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were ii cxD �� −=  is distance between an entry pattern x�  and i–th cluster of the radial basic 
function ic� , σ - width of a cluster. 

The RBF-neuron weight coefficients are associated with cluster of the radial basic function. 
Thus, the output data of RBF-layer represents a vector of closeness measures of entry pattern 
to all RBF-clusters. 
The subsequent layers of such networks usually evaluate a linear combination of these 
functions. 
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Key aspect for the RBF-network training is the possibility of layer-by-layer training, that 
result in two-phase training algorithm: a RBF-layer training and perceptron layer training. 



3.1. RBF-layer training 
The RBF-layer training consists of two tasks: definition of necessary amount of RBF-neurons, 
and their weight coefficients setting. The training is produced by the following rules:  

If in RBF-layer there are no such neurons that σ<iD  or amount of neurons is equal to 0, 
than it is necessary to add a new neuron initializing its weights by training pattern vector 
value. 

Else modification i-th neuron weights for which )(min ii
D

∀
 is performed 

))()1((
1

1)()1( tctx
t

tctc iii
���� −+⋅

+
+=+ , (8) 

were icx ��,  are training vector and cluster vector accordingly, t-amount of additions. 

3.2. Perceptron layer training  
The perceptron layer training is made by a gradient descent method with the purpose of the 
error function minimization in weight coefficient space jiw , : 
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were n=[1..N] is amount of learning images, n
jt  - target value of an j-th output for a training 

pattern n. 

4. CLASSIFICATION RESULTS 
A part of binary image database used in experiments is presented in Fig. 3. Database consists 
of 10 classes of images (10 Arabic numerals). Each class consists of 225 objects. 175 objects 
from each class are used for training and 50 – for recognition. 

For classification the RBF neural network classifier and minimal distance classifier [2] were 
used. Classification results for different maximum order of Legendre moments is presented in 
Table 1. 

Table 1. Binary images classification results 
Recognition percent, %  

MAX_ORDER 

 

Minimal distance classifier Neural network 

5 76,4 92

10 90,6 98,2

15 91,6 98,7

20 88,4 98,7

25 85,2 98,5



 
Fig3. Part of binary images database 

5. CONCLUSION 
In this paper the problem of handwritten characters (Arabic numerals) recognition was 
examined. Legendre moments properties as a classifiers features were investigated. Also 
characteristics of new classifier based on neural network in comparison with minimal distance 
classifier were tested. On classification results the next conclusions can be done: 

- during classification performing it is no purpose to use moment functions with maximum 
order above 20. 

- classification must be performed using neural network classifiers. 
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Design Exploration Tools  
 

Software Simulation 
 

Hardware Accelerations 
 

Design Optimizers and Debuggers 
 

IP Core & Design Services 
 
 
 
 
 

To become a champion, you only need to 
make this one move…go to  

www.aldec.com 
 
 
 
 
 

UNIX-Linux-NT Tools for ASIC and FPGA Applications 
 

Aldec, Inc. 
2230 Corporate Circle 
Henderson, NV 89014 
Tel. (702) 990-4400 

Aldec-ADT Sp. z o.o. 
40-118 Katowice 

ul. Widok 23 
tel. (032) 201-0880 

Aldec-Polska Sp. z o.o. 
30-252 Krakow 

ul. A. Szyszko-Bohusza 19 
tel. (012) 429-7036 

http://www.aldec.com
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the biggest IT company 
in Ziemia Lubuska 
(western province in Poland) 

 
 
 
 

 
 

 
www.vadim.com.pl 

 
 

VADIM Center 
65-426 Zielona Góra 

ul. Kupiecka 28 
tel. (+48 68) 327 0705 

 
VADIM Sp. z o.o. 
02-544 Warszawa  

ul. Madalińskiego 57 
tel. (+48 22) 849 2412 

 
VADIM- Hurt 

65-066 Zielona Góra 
ul. Żeromskiego 27 

tel. (+48 68) 324 6368 
 

http://www.vadim.com.pl


 
 
MABEX-Multimedia proudly presents: VASCO HDL - multimedia interactive 
courses for VHDL and Verilog users. 

 
 
MABEX services: 
 
� Sale of highly successful VASCO HDL training software (over 1.000 copies 

sold in the year 2000) 
� Production of interactive Computer-Based and Web-Based Training 

applications, 
� Multimedia presentations, 
� Internet portals, 
� Applications with data exchange with the internet database systems, and 

more! 

http://www.mabex.com
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