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Abstract. A problem of program implementation of parallel algorithms of logical control 
is considered. Parallel algorithms are represented in PRALU as a set of linear algorithms 
that can be executed under the control of mechanism of Petri net type. The goal is to build 
the compiler from language PRALU.  This compiler can be used as working tool to build 
programmable logic controller (PLC) or supervisory control application or Forth 
application. 
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1. INTRODUCTION  
Although developed primary for logic control, PRALU [10] can be used to structure any 
application that involves sequences of operations and controlled flow of execution, and where 
it is important to be able to represent communication between the parts of system. This 
language has textual and graphical forms. The advantage of the graphical form is the 
simplicity and declarativeness. The textual form is used as formal tool or as intermediate 
representation.   

A programmable logic controller (PLC) is digitally operating electronic system designed for 
the use in an industrial environment. It was originally developed to replace electro-magnetic 
relay circuits or solid-state logic blocks [7]. Relay Ladder Logic (RLL), the most common 
graphical language for PLC is symbolic representation of relay circuits. The core of PLC 
software is a program, which interprets RLL diagrams. This program continually scan RLL 
diagram. The time elapsed during a scan (proportional to the length of RLL) determines 
response time of the PLC. PLC with language PRALU have less response time. 

Supervisory control applications such as set-point control, monitoring, fault detection and 
production optimisation are mainly operator support systems. There is a large industrial 
interest in applying AI (Artificial Intelligence) techniques to this type of the application [10]. 
These applications typically use the object-oriented knowledge base with the rule-based 
programming. A large problem with the rule-based system is their lack of structure. Language 
PRALU can be used to structure the set of rules in these applications. 

Programming language Forth [8] was originally developed for small embedded control mini- 
and micro-computers. It has been used in a wide variety of applications, but his main area is 



distributed real time control systems. Using PRALU as programming language of Forth 
systems extends their fighting chance by the logic control. 

The common feature for all above-mentioned applications is the generic lack of capacity of 
previously used languages. Using PRALU in this case offers the capability to improve 
execution speed and maintenance of the application.  

In this work the set of operations (Intermediate Language) is proposed, which is concise to 
represent any PRALU algorithm as a program for a single processor computer. To prove the 
sufficiency of the chosen set, all PRALU constructions are considered, and equal sequences of 
operations of intermediate language are shown. The implementation of this intermediate 
language is inexpensive. Any operation in this set can be implemented as a short sequence 
(average length is equal to 3 for Intel 86 family) of modern microprocessor commands. As a 
result the quality of target program is achieved. 

The proposed method of program implementation of parallel algorithms of logical control can 
be used for deriving a program from any specification that can be mapped into the state based 
representation with arcs labeled with a symbol of events. In [5] a technique for converting 
behavior description into Petri net is described. Thereafter, as the graphical form of PRALU 
algorithm is the interpreted Petri net, it is possible to implement programmatically any state 
based representation. 

To design and debug of PRALU algorithms there are programming environments on the most 
commonly used platforms – IBM PC, MS Windows [12] and MS DOS [2].  In [4] ActiveX 
component is described that can be used as control engine of supervisory control applications. 
This component constitutes its own interface through which the execution of PRALU 
algorithms can be animated. 

2. MINIMAL SEMANTICS OF PRALU 
In [10] for describing the rules of executions of PRALU algorithms the notion of parallel 
automaton is used. But this semantics of PRALU is oriented to hardware implementation. 
Many tasks (for example, optimal state encoding) are insignificant in program 
implementation. Parallel systems software design requires attention to detail beyond that 
normally required for hardware systems.  

The process of implementation of PRALU can be viewed as the replacement of the PRALU 
semantics by another, more detail one. A language can have several semantics that distinguish 
of detail level. The minimal semantics is a formal system that states fundamental properties 
only, and other correct semantics must include these properties. The minimal semantics puts a 
problem of the validity of an implementation on the firm ground of the formalism. 

In the minimal semantics a PRALU algorithm (see example 5.1) is viewed as formulae of 
logic calculus. This logic calculus combines the linear time temporal logic and the branching 
time temporal logic. The objects of this calculus are a time interval, operation and a time 
point, event. The operation can be active, executing or passive, stopping. The states of 
operation are given in a schedule of the process of execution of the PRALU algorithm. The 
time is the notion of the minimal semantics and must be understood as in temporal logic. 

In the minimal semantics of PRALU following presumptions are supposed to be valid. 
1. The operations are connected (there is no time gap between adjacent operations). 
2. The execution sequence of operations is deterministic (the next time point is unique). 
3. The execution of operation depends on the same set of operations (symmetry of time 

point). 



4. The event can be either the result of operation or the reason of firing of operation. 

If event is the reason of firing operation then this operation is called “wait” and is denoted as 
“-”. If event is a result of operation it is called “action” (is denoted as “->”). The operations of 
PRALU are orthogonal by the causal relation between events and operations. The formal 
description of minimal PRALU semantics is in [3].  

The causal relation (partial order) between the operations is determined from control structure 
of PRALU algorithms (fig. 1). The structure of PRALU algorithms directly identifies the 
causal relations between operations. The full behavior includes the causal relation between 
events. Consequently the behavior of algorithms depends on an interaction of operation by 
events (information exchange). In minimal PRALU semantics the model of information 
exchange is the same as in CCS [6]. As a result PRALU is not implementable in minimal 
semantics.  

 
Fig. 1. Representation of PRALU algorithm as Petri net 

The minimal semantics is primary a specification and it is useful because it lets us formally 
specify many different implementations of behaviour. Known methods of the PRALU 
algorithms validation [10] are true in minimal semantics, and consequently they are true in 
any correct elaboration of minimal semantics.  

3. ELABORATIONS OF MINIMAL SEMANTICS 
To be implemented semantics must predict the behaviour of PRALU algorithms 
unambiguously. The elaborated semantics must determine one-valued relation between the 
plan of operation execution and the causal structure of events. The information about the 
allowed orders and the times of events are captured in elaborated semantics. 

Let us suppose that the wait operation starts at the same time point as event occurs that is the 
reason of firing this operation, and the action operation ends at the same time point as the 
event occurs that is the result of this operation (as it takes place in hardware implementation). 
In this case the relation between the plan of operation execution and the causal structure of 
events is determined by supposition about the duration of action in PRALU algorithms.  

The hardware implementation of a PRALU algorithm has fully-specified behavior. The times 
of all operations are determined by the structure of a circuit. In formal terms the duration of 
all action operations is constant for every operation (it is not changed during execution of 
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algorithm). The hardware implementation has their communication scheduled statically in 
design time. 

In CCS [6] the message exchange is determined with the concurrency relation. This relation 
fixes the set of couples of events. Each couple determines a single exchange event. But this 
relation is not a part of CCS model. Likewise language PRALU does not have explicit means 
to use this approach. 

Other means is measured time, which is often used in concurrency determination. In PRALU 
measured time equals to the supposition about equality of times (continuance) of all action 
operations in the algorithm. The other form of this supposition is: the operation can not be 
executed in parallel to yourself. 

4. INTERMEDIATE LANGUAGE 
The converting Petri net into a program is considered in [9]. Our method produces a faster 
program. We propose the set of operations (Intermediate Language), which is concise to 
represent any PRALU algorithm as a program, and inexpensive implementation of this 
intermediate language. The proposed set of operations is the basis of algorithmic 
decomposition of the source algorithms. The wait and action operations are not unit actions 
and rather are the compositions in the proposed intermediate language. 

To implement a concurrent algorithm on a single processor we must sort the plan of operation 
execution. This procedure is called scheduler. The scheduler of PRALU intermediate 
language is an object, which has properties and methods. The scheduler properties are a wait 
queue and a prepared queue. The scheduler methods are: thread start, thread stop, and thread 
interrupt. The scheduler methods are included into PRALU intermediate language.  

Thread start operation includes into prepared queue the operation given in argument. Thread 
interrupt includes the next operation of algorithm into wait queue and takes the top operation 
from prepared queue and fires it. Thread stop stops current thread, takes the top operation 
from prepared queue and fires it. Thread stop operation has a conditional form.  

The initial state of the scheduler is: prepared queue contains the first operation of the 
algorithm and wait queue is empty. If the scheduler has an empty prepared queue, then it 
copies content of wait queue into prepared queue and empties the wait queue. The realization 
of a queue is don’t care for correct implementation of concurrency; this is the matter of the 
productivity of a program. 

Prepared queue of a Forth system [8] is a data stack and wait queue is a call stack. In 
microprocessor program prepared queue is programmatically realized and wait queue is a call 
stack of microprocessor. 

Besides this, there are operations of setting input or output buffers in PRALU intermediate 
language. To do information exchange, the output buffer is copied into the input buffer, when 
prepared queue is empty. At the same point of time the data output is executed from output 
buffer, and the external signals input into the input buffer. This guarantees that concurrently 
executing operations of the source algorithms have equal continuance. 

Current marking of Petri net is represented by control vector. Each bit in this vector 
corresponds to the net place (the label of chain in source algorithm). The initial state of this 
vector is 0 in all bits. A mask vector is used to control the execution of dependent chains. The 
initial state of this vector is 0 in all bits. The conditional form of a thread stop operation tests 
this vector. If an argument is given, then this operation stops current thread, if mask vector bit 
is equal to 0. 



Table 1.The instruction code of PRALU intermediate language. 
 

Symbol Function 
@ 
% 
A 
$ 
O 
P 
R 
M 
C 
 

Thread interrupt 
Thread start 
Thread stop 
Set of output buffer 
Test of input buffer 
Set of control vector 
Reset of control vector 
Set of mask vector 
Reset of mask vector 
 

5. CONVERTING PRALU ALGORITHM INTO A PROGRAM 
The compilation of PRALU is a substitution of PRALU operations by a sequence of 
intermediate language operations. The compiler PRALU uses the following patterns of 
substitution: 
action operation ( ->x,…,y) => $(x,..y); 
wait operation (-a,…,b) => @Aw1,..wn:O(a,…,b)Mw1,…,wn. 
goto operation  (->n,…,m) => Pw1,…wn:%n,…,%m 
The pattern of wait operation and goto operation depends on parsing of source algorithm. This 
is general form. 
 

5.1. Example. 

1: -y ->ac –‘y ->b ->2.3 
2: -x ->’a’b ->4.5 
3: -y’x ->6 
3: -yx ->c –‘x ->’c ->3 
4: -p ->a ->7 
5: -‘xp ->b ->8 
6.7.8: ->’a’b’c ->.

1: @O(y) $(a,c) @O( ‘y) $(b) %2%3 A 
2: @O(x) $(’a,’b) %4%5 A 
3: @Aw1O(y’,x)Mw1Mw2 P6 %7 A 
4: @Aw1O(y,x) Mw1 $(c) @O(‘x) $(’c) @@ Pw1 %4%3 A 
5: @O(p) $(a) Mw2P7 %7 A 
6: @O( ‘x,p) $(b) Mw2P8 %7 A 
7: @Aw2O(P6, P7,P8)Mw2 C(P6, P7,P8) $(a’b’c) A 

 

The result of compilation of algorithm on the left column is shown on the right one. 

6. CONCLUSIONS 
In this paper, we have discussed a systematic method to implement PRALU algorithm as a 
program. This method can be used for deriving a program from any specification that can be 
mapped into state based representation with arcs labeled with symbols of events. 

In real life the proposed method has been used as a tool for designing programmable logic 
controllers, supervisory control applications, and Forth logic control capability. 
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