
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

DERIVING PROGRAMS FROM PARALLEL
ALGORITHMS OF LOGICAL CONTROL

Dmitrij . I. CHEREMISINOV

Institute of Engineering Cybernetics of National Academy of Sciences of Belarus,
Surganov str., 6, 220012, Minsk, Belarus, cher@newman.bas-net.by

Abstract. A problem of program implementation of parallel algorithms of logical control
is considered. Parallel algorithms are represented in PRALU as a set of linear algorithms
that can be executed under the control of mechanism of Petri net type. The goal is to build
the compiler from language PRALU. This compiler can be used as working tool to build
programmable logic controller (PLC) or supervisory control application or Forth
application.

Key Words. Parallel algorithms of logical control, Petri nets, program implementation,
compilation

1. INTRODUCTION
Although developed primary for logic control, PRALU [10] can be used to structure any
application that involves sequences of operations and controlled flow of execution, and where
it is important to be able to represent communication between the parts of system. This
language has textual and graphical forms. The advantage of the graphical form is the
simplicity and declarativeness. The textual form is used as formal tool or as intermediate
representation.

A programmable logic controller (PLC) is digitally operating electronic system designed for
the use in an industrial environment. It was originally developed to replace electro-magnetic
relay circuits or solid-state logic blocks [7]. Relay Ladder Logic (RLL), the most common
graphical language for PLC is symbolic representation of relay circuits. The core of PLC
software is a program, which interprets RLL diagrams. This program continually scan RLL
diagram. The time elapsed during a scan (proportional to the length of RLL) determines
response time of the PLC. PLC with language PRALU have less response time.

Supervisory control applications such as set-point control, monitoring, fault detection and
production optimisation are mainly operator support systems. There is a large industrial
interest in applying AI (Artificial Intelligence) techniques to this type of the application [10].
These applications typically use the object-oriented knowledge base with the rule-based
programming. A large problem with the rule-based system is their lack of structure. Language
PRALU can be used to structure the set of rules in these applications.

Programming language Forth [8] was originally developed for small embedded control mini-
and micro-computers. It has been used in a wide variety of applications, but his main area is

distributed real time control systems. Using PRALU as programming language of Forth
systems extends their fighting chance by the logic control.

The common feature for all above-mentioned applications is the generic lack of capacity of
previously used languages. Using PRALU in this case offers the capability to improve
execution speed and maintenance of the application.

In this work the set of operations (Intermediate Language) is proposed, which is concise to
represent any PRALU algorithm as a program for a single processor computer. To prove the
sufficiency of the chosen set, all PRALU constructions are considered, and equal sequences of
operations of intermediate language are shown. The implementation of this intermediate
language is inexpensive. Any operation in this set can be implemented as a short sequence
(average length is equal to 3 for Intel 86 family) of modern microprocessor commands. As a
result the quality of target program is achieved.

The proposed method of program implementation of parallel algorithms of logical control can
be used for deriving a program from any specification that can be mapped into the state based
representation with arcs labeled with a symbol of events. In [5] a technique for converting
behavior description into Petri net is described. Thereafter, as the graphical form of PRALU
algorithm is the interpreted Petri net, it is possible to implement programmatically any state
based representation.

To design and debug of PRALU algorithms there are programming environments on the most
commonly used platforms – IBM PC, MS Windows [12] and MS DOS [2]. In [4] ActiveX
component is described that can be used as control engine of supervisory control applications.
This component constitutes its own interface through which the execution of PRALU
algorithms can be animated.

2. MINIMAL SEMANTICS OF PRALU
In [10] for describing the rules of executions of PRALU algorithms the notion of parallel
automaton is used. But this semantics of PRALU is oriented to hardware implementation.
Many tasks (for example, optimal state encoding) are insignificant in program
implementation. Parallel systems software design requires attention to detail beyond that
normally required for hardware systems.

The process of implementation of PRALU can be viewed as the replacement of the PRALU
semantics by another, more detail one. A language can have several semantics that distinguish
of detail level. The minimal semantics is a formal system that states fundamental properties
only, and other correct semantics must include these properties. The minimal semantics puts a
problem of the validity of an implementation on the firm ground of the formalism.

In the minimal semantics a PRALU algorithm (see example 5.1) is viewed as formulae of
logic calculus. This logic calculus combines the linear time temporal logic and the branching
time temporal logic. The objects of this calculus are a time interval, operation and a time
point, event. The operation can be active, executing or passive, stopping. The states of
operation are given in a schedule of the process of execution of the PRALU algorithm. The
time is the notion of the minimal semantics and must be understood as in temporal logic.

In the minimal semantics of PRALU following presumptions are supposed to be valid.
1. The operations are connected (there is no time gap between adjacent operations).
2. The execution sequence of operations is deterministic (the next time point is unique).
3. The execution of operation depends on the same set of operations (symmetry of time

point).

4. The event can be either the result of operation or the reason of firing of operation.

If event is the reason of firing operation then this operation is called “wait” and is denoted as
“-”. If event is a result of operation it is called “action” (is denoted as “->”). The operations of
PRALU are orthogonal by the causal relation between events and operations. The formal
description of minimal PRALU semantics is in [3].

The causal relation (partial order) between the operations is determined from control structure
of PRALU algorithms (fig. 1). The structure of PRALU algorithms directly identifies the
causal relations between operations. The full behavior includes the causal relation between
events. Consequently the behavior of algorithms depends on an interaction of operation by
events (information exchange). In minimal PRALU semantics the model of information
exchange is the same as in CCS [6]. As a result PRALU is not implementable in minimal
semantics.

Fig. 1. Representation of PRALU algorithm as Petri net

The minimal semantics is primary a specification and it is useful because it lets us formally
specify many different implementations of behaviour. Known methods of the PRALU
algorithms validation [10] are true in minimal semantics, and consequently they are true in
any correct elaboration of minimal semantics.

3. ELABORATIONS OF MINIMAL SEMANTICS
To be implemented semantics must predict the behaviour of PRALU algorithms
unambiguously. The elaborated semantics must determine one-valued relation between the
plan of operation execution and the causal structure of events. The information about the
allowed orders and the times of events are captured in elaborated semantics.

Let us suppose that the wait operation starts at the same time point as event occurs that is the
reason of firing this operation, and the action operation ends at the same time point as the
event occurs that is the result of this operation (as it takes place in hardware implementation).
In this case the relation between the plan of operation execution and the causal structure of
events is determined by supposition about the duration of action in PRALU algorithms.

The hardware implementation of a PRALU algorithm has fully-specified behavior. The times
of all operations are determined by the structure of a circuit. In formal terms the duration of
all action operations is constant for every operation (it is not changed during execution of

1

2 3

4 5

7 8 6

-y ->ac –‘y -b

-x->’a’b

-yx ->c –‘x ->’c
-y ‘x

-‘xp ->b -p >a

->’a’b’c

algorithm). The hardware implementation has their communication scheduled statically in
design time.

In CCS [6] the message exchange is determined with the concurrency relation. This relation
fixes the set of couples of events. Each couple determines a single exchange event. But this
relation is not a part of CCS model. Likewise language PRALU does not have explicit means
to use this approach.

Other means is measured time, which is often used in concurrency determination. In PRALU
measured time equals to the supposition about equality of times (continuance) of all action
operations in the algorithm. The other form of this supposition is: the operation can not be
executed in parallel to yourself.

4. INTERMEDIATE LANGUAGE
The converting Petri net into a program is considered in [9]. Our method produces a faster
program. We propose the set of operations (Intermediate Language), which is concise to
represent any PRALU algorithm as a program, and inexpensive implementation of this
intermediate language. The proposed set of operations is the basis of algorithmic
decomposition of the source algorithms. The wait and action operations are not unit actions
and rather are the compositions in the proposed intermediate language.

To implement a concurrent algorithm on a single processor we must sort the plan of operation
execution. This procedure is called scheduler. The scheduler of PRALU intermediate
language is an object, which has properties and methods. The scheduler properties are a wait
queue and a prepared queue. The scheduler methods are: thread start, thread stop, and thread
interrupt. The scheduler methods are included into PRALU intermediate language.

Thread start operation includes into prepared queue the operation given in argument. Thread
interrupt includes the next operation of algorithm into wait queue and takes the top operation
from prepared queue and fires it. Thread stop stops current thread, takes the top operation
from prepared queue and fires it. Thread stop operation has a conditional form.

The initial state of the scheduler is: prepared queue contains the first operation of the
algorithm and wait queue is empty. If the scheduler has an empty prepared queue, then it
copies content of wait queue into prepared queue and empties the wait queue. The realization
of a queue is don’t care for correct implementation of concurrency; this is the matter of the
productivity of a program.

Prepared queue of a Forth system [8] is a data stack and wait queue is a call stack. In
microprocessor program prepared queue is programmatically realized and wait queue is a call
stack of microprocessor.

Besides this, there are operations of setting input or output buffers in PRALU intermediate
language. To do information exchange, the output buffer is copied into the input buffer, when
prepared queue is empty. At the same point of time the data output is executed from output
buffer, and the external signals input into the input buffer. This guarantees that concurrently
executing operations of the source algorithms have equal continuance.

Current marking of Petri net is represented by control vector. Each bit in this vector
corresponds to the net place (the label of chain in source algorithm). The initial state of this
vector is 0 in all bits. A mask vector is used to control the execution of dependent chains. The
initial state of this vector is 0 in all bits. The conditional form of a thread stop operation tests
this vector. If an argument is given, then this operation stops current thread, if mask vector bit
is equal to 0.

Table 1.The instruction code of PRALU intermediate language.

Symbol Function
@
%
A
$
O
P
R
M
C

Thread interrupt
Thread start
Thread stop
Set of output buffer
Test of input buffer
Set of control vector
Reset of control vector
Set of mask vector
Reset of mask vector

5. CONVERTING PRALU ALGORITHM INTO A PROGRAM
The compilation of PRALU is a substitution of PRALU operations by a sequence of
intermediate language operations. The compiler PRALU uses the following patterns of
substitution:
action operation (->x,…,y) => $(x,..y);
wait operation (-a,…,b) => @Aw1,..wn:O(a,…,b)Mw1,…,wn.
goto operation (->n,…,m) => Pw1,…wn:%n,…,%m
The pattern of wait operation and goto operation depends on parsing of source algorithm. This
is general form.

5.1. Example.

1: -y ->ac –‘y ->b ->2.3
2: -x ->’a’b ->4.5
3: -y’x ->6
3: -yx ->c –‘x ->’c ->3
4: -p ->a ->7
5: -‘xp ->b ->8
6.7.8: ->’a’b’c ->.

1: @O(y) $(a,c) @O(‘y) $(b) %2%3 A
2: @O(x) $(’a,’b) %4%5 A
3: @Aw1O(y’,x)Mw1Mw2 P6 %7 A
4: @Aw1O(y,x) Mw1 $(c) @O(‘x) $(’c) @@ Pw1 %4%3 A
5: @O(p) $(a) Mw2P7 %7 A
6: @O(‘x,p) $(b) Mw2P8 %7 A
7: @Aw2O(P6, P7,P8)Mw2 C(P6, P7,P8) $(a’b’c) A

The result of compilation of algorithm on the left column is shown on the right one.

6. CONCLUSIONS
In this paper, we have discussed a systematic method to implement PRALU algorithm as a
program. This method can be used for deriving a program from any specification that can be
mapped into state based representation with arcs labeled with symbols of events.

In real life the proposed method has been used as a tool for designing programmable logic
controllers, supervisory control applications, and Forth logic control capability.

REFERENCES
[1] Karl-Eric Arzen, “Grafcet for intelligent supervisory control application”, Automatica,

Vol. 30, No. 10, pp. 1513 – 1525, 1994

[2] D.I.Cheremisinov, The visualization of behavior PRALU algorithms, Minsk, Institute of
Engineering Cybernetics of Belarus Academy of Sciences, 1988 (in Russian)

[3] D.I.Cheremisinov, “The time model of PRALU algorithms”, Logic design automation of
digital systems, Minsk, Institute of Engineering Cybernetics of Belarus Academy of
Sciences, pp. 46-55, 1991 (in Russian)

[4] D.I.Cheremisinov, “The engine of PRALU as ActiveX component”, Logic design, Minsk,
Institute of Engineering Cybernetics of Belarus Academy of Sciences, vol. 2, 1997 (in
Russian)

[5] J.Cortadella, M.Kishinevsky, L.Lovagno, A.Yakokovlev, “Deriving Petri nets from finite
transition system”, IEEE Trans. on Computers, Vol. 47, No 8, pp. 859-882, 1998

[6] C.A.R. Hoare, Communicating sequential processes, Prentice-Hall, Englewood Cliffs,
NJ, 1985

[7] G. Michel, Programmable Logic Controllers, Wiley, New York, 1994
[8] C.H. Moore, “FORTH: A new way to program a mini-computer”, Astr. and Astrophys.

Suppl., Vol. 5, pp. 497-511, 1974
[9] R.A. Nelson, L.M. Haibt, P.T. Sheridan, “Casting Petri nets into programs”, IEEE Trans.

Software Eng., Vol. 9, No. 5, pp. 590-602, 1983
[10] A.D.Zakrevskij, Parallel algorithms for logical control, Minsk, Institute of

Engineering Cybernetics of NAS of Belarus, 1999 (in Russian)
[11] A. Zakrevskij, B.Steinbach, “Sequent automaton - a model for logical control”,

Proc.of the Int. Workshop “Discrete Optimization Methods in Scheduling and Computer-
Aided Design”, Republic of Belarus, Minsk, Sept. 5-6, pp. 211-215, 2000

[12] A.D. Zakrevskij, Y.V. Pottosin, V.I. Romanov, I.V. Vasilkova, “Experimental system
of automated design of logical control devices”, Proc.of the Int. Workshop “Discrete
Optimization Methods in Scheduling and Computer-Aided Design”, Republic of Belarus,
Minsk, Sept. 5-6, pp. 216-222, 2000

