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Abstract. Three algorithms for assignment of partial states of synchronous parallel 
automata are considered. Two of them are heuristic, the third one is exact, i.e. the 
number of coding variables obtained by this algorithm is minimum. It is based on 
covering a non-parallelism graph of partial states by complete bipartite subgraphs. 
One of the heuristic algorithms is based on the solving the same problem but it uses 
an approximate method for it. The other of them is known as iterative one. The 
results of application of these algorithms on some pseudo-random synchronous 
parallel automata and the method for generating such objects are given. 
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1. INTRODUCTION 
The parallel automaton is a functional model of a discrete device and is rather convenient to 
represent the parallelism of interactive branches of controlled process [17]. The main 
distinction between a parallel automaton and a sequential one (finite state machine) is that the 
latter can be in only one state at any moment while the parallel automaton can be in several 
partial states simultaneously. A set of partial states a parallel automaton can be at 
simultaneously is called a total state. Any two partial states in which an automaton can be 
simultaneously are called parallel. 

A parallel automaton is described by the set of strings of the form µi : − wi → vi → νi, where wi 
and vi are elementary conjunctions of Boolean variables that define the condition of transition 
and the output signals respectively, µi and νi are labels that represent the sets of partial states of 
the parallel automaton [17]. Every such a string should be understood as follows. If the total 
state of the parallel automaton contains all the partial states from µi and the event wi has been 
realised in the input variable space, then the automaton is found to be in the total state that 
differs from the initial one by containing partial states from νi instead of those from µi. The 
values of output variables in this case are set to be such that vi = 1. 
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If − wi and → vi are removed from the string it can be interpreted as a transition (µi, νi) in a 
Petri net. So, the set of such reduced strings can be considered as a Petri net being a “skeleton” 
of the given parallel automaton. Here we consider only those parallel automata whose skeleton 
is an α-net [17] that is a subclass of live and safe expanded nets of free choice which are 
studied in [6]. 

In state assignment of a parallel automaton, partial states are encoded by ternary vectors in the 
space of introduced internal variables that can take values 0, 1 or “−”, orthogonal vectors being 
assigned to non-parallel states and non-orthogonal vectors to parallel states [2, 15, 16]. The 
orthogonality of ternary vectors means existence of a component having opposite values (0 and 
1) in these vectors. It is natural to minimise the dimension of the space that results in the 
minimum of memory elements (flip-flops) in the circuit implementation of the automaton. 

The methods to solve the state assignment problem for synchronous parallel automata are 
surveyed in [4]. Two heuristic algorithms are considered here. One of them is based on iterative 
method [3], the other reduces the minimisation of the number of memory elements to the 
problem of covering a non-parallelism graph of partial states by complete bipartite subgraphs 
[9]. To solve the problem of covering it uses a heuristic technique. The third algorithm 
considered here is exact, i.e. the number of coding variables (memory elements) obtained by 
this algorithm is minimum. It also finds a cover of a non-parallelism graph of partial states by 
complete bipartite subgraphs but using an exact technique [11]. These three algorithms were 
used to encode partial states of a number of synchronous parallel automata obtained as pseudo-
random objects. The pseudo-random parallel automata with the given parameters were 
generated by a special computer program. The method for generating such objects is described. 
The results of this experiment allow one to decide about the quality of the algorithms. Similar 
experiments are described in [18] where another approach was investigated and the pseudo-
random objects were Boolean matrices interpreted as partial states orthogonality matrices of 
parallel automata. 

2. EXACT ALGORITHM 
Below we refer to this algorithm as Algorithm A. It is based on covering a non-parallelism 
graph G of partial states by complete bipartite subgraphs. Let the complete bipartite subgraphs 
B1, B2, ... , Bm form a shortest covering of G, and Bk for every k = 1, 2, ... , m be associated with 
a Boolean coding variable zk so that zk = 1 for the states relative to one partite set of Bk and 
zk = 0 for the states relative to the other. Then the values of coding variables z1, z2, ... , zm 
represent the solution sought for. The covering is considered here as every edge of G belongs to 
at least one Bk. 

The first step to the solution is finding all maximum complete bipartite subgraphs of G. Three 
ways to do it are given in [10, 15]. Then one must obtain the shortest covering of edge set of G 
by those complete bipartite subgraphs. For decreasing the dimension of the covering problem 
the reduction rules for initial graph are used in construction the covering matrix. These rules are 
described in [15]. Another way to decrease the dimensions of the problem is given in [11]. It 
can be applied if G can be represented as G = G1 + G2, i.e. in the form of the result of join 
operation on two graphs [7]. The decrease is achieved if one of G1 and G2, say G1, is a 
complete graph. This is typical for an automaton whose “skeleton” is α-net. Then the covering 
problem is solved only for G2. When the cover is obtained the codes of the states which are 
associated with the vertices of G2 are chosen as shown above. These codes form a Boolean 
space of coding variables. If they don’t occupy all the space, the codes of the states associated 
with the vertices of G1 are placed in the rest. The space is extended, if necessary, to the size 
enough for placing all state codes. In this case a non-redundant cover must be found rather than 



a shortest one. Algorithm A realises this method. The idea of using decomposition as the means 
to reduce the dimension of the task is rather fruitful. For example, one can see in [8] another 
case of using decomposition to decrease the dimension of the problem of our field. 

3. HEURISTIC ALGORITHMS 

3.1. Algorithm B 
The NP-hardness of covering problem [5] doesn’t allow it always to be solved in acceptable 
time. Therefore the heuristic algorithm is proposed in [9] that obtains in many cases the shortest 
cover. We call it Algorithm B. It consists of two stages. At the first stage the sequence of 
graphs G2, G3, ... , Gn = G is considered, where G is the non-parallelism graph of the given 
automaton with V = {v1, v2, ... , vn} as the set of vertices, and Gi is the subgraph of G induced 
by the set of vertices Vi = {v1, v2, ... , vi}. Having the cover of Gi the transition from it to the 
cover of Gi+1 is carried out. At the second stage the obtained cover is improved (if possible). 
This improvement consists in removing some complete bipartite subgraph from the covering 
and in the attempt of reconstruction the cover by adding edges to remained subgraphs. This 
procedure repeats for all elements of the cover. The complete bipartite subgraphs are obtained 
concurrently with constructing the cover. 

3.2. Algorithm C 
The other heuristic algorithm is based on the iterative method suggested in [3]. We refer to this 
algorithm as Algorithm C. The iterative method assumes the definition of parallelism relation 
and an initial coding matrix for partial states (the initial matrix may be empty). The matrix is 
extended in the process of coding by introducing additional coding variables that makes it 
possible to separate non-parallel partial states in certain pairs. To separate two states means to 
put opposite values (0 and 1) to some coding variable in the codes of these states. The method 
consists in iterative executions of two procedures: introducing a new coding variable and 
defining its values in codes of non-separated yet non-parallel partial states. These procedures 
are being executed until all non-parallel states have been separated. Minimising the number of 
introduced coding variables the method minimises the Hamming distance between codes of 
states related by transitions as well. The aim of this is the minimisation of the number of 
switchings of RS type flip-flops in circuit realisation of a parallel automaton. 

Introducing a new coding variable is accompanied with separating the maximal number of non-
separated yet non-parallel partial states by this variable. For this purpose at each step of the 
procedure of defining the values of the due variable, a state is chosen to encode by this 
variable. This state should be separated from the maximal number of states encoded already by 
this variable. The number of states that are not separated from the chosen one and have been 
encoded by this variable must be maximum. A new coding variable is introduced if the inner 
variables having been introduced don’t separate all non-parallel partial states from each other. 

4. GENERATING PARALLEL AUTOMATA 

Any string of the form µi : − wi → vi → νi in automaton specification we call a transition, and a 
set of transitions with the same µi a sentence. The algorithm for generating parallel automata is 
described in detail in [12] where a parallel automaton is constructed as a system of three 
pseudo-random objects. They are the skeleton of the automaton that is an α-net specified in the 
form of a sequence of pairs (µi, νi), the ternary matrix X representing conjunctions wi, and the 



ternary matrix Y representing conjunctions vi. In our task the α-net is enough, therefore we 
shouldn’t describe the way of generating X and Y here. 

The given beforehand parameters of every pseudo-random α-net generated by a special 
computer program are the number of places (partial states of the automaton) p, the number of 
transitions t, and the number of sentences s. 

Generating pseudo-random parallel automata as systems of three mentioned above objects with 
given beforehand parameters would not be difficult if no correctness demands exist without 
which there is no sense to execute algorithms intended for such automata. Proceeding from the 
correctness properties of a parallel control algorithm that are named in [16], let us consider the 
following properties of a parallel automaton, that guarantee its correctness in our case. It must 
be irredundant (there is no transition that can be never done), recoverable (it can return to the 
initial total state from any other one), and self-coordinated (any transition cannot be started 
before it ceases). 

Irredundancy, recoverability, and self-co-ordination of a parallel automaton corresponds to 
liveness and safety of the related α-net [16]. The characteristic properties of α-net are the initial 
marking of it consisting of one element, {1}, and the sets of input places of two different 
transitions coinciding or disjoining. In the Petri net theory the reduction methods for checking 
liveness and safety are well known [1], where the initial net is transformed according to certain 
rules with preserving these properties. The transformations reduce the dimension of a given net 
and so facilitate the checking liveness and safety of the net. 

To check liveness and safety of α-nets the application of two rules is sufficient [16]. The first 
rule consists in deleting loops i.e. the transitions where µi = νi. The second one is as follows. 
Let a set of places π not containing place 1 be such that for every transition (µi, νi), π ∩ µi ≠ ∅ 
implies π = µi and π ∩ νi = ∅, and π ∩ νi ≠ ∅ implies π ⊆ νi. Besides, there exists at least one 
transition with π ∩ νi ≠ ∅. Then all transitions (µj, νj) with π = µi are removed and every 
transition (µk, νk) with π ⊆ νk is substituted by the set of transitions that are obtained from 
(µk, νk) by replacing π by sets νj from those transitions (µj, νj) where π = µj. A live and safe α-
net is proved in [14] to be completely reducible, i.e. the application of these rules leads to the 
net that consists of the only transition (1,1). This implies the way of generating live and safe α-
nets that consists in transformations that are inverse to the above. 

5. EXPERIMENTAL RESULTS 
Algorithms A, B, and C are realised in computer programs and the corresponding modules are 
included as components into ISAPR that is a research CAD system [13]. The program for 
generating pseudo-random parallel automata is included into ISAPR as well. This program was 
used to generate several parallel automata. The results of partial state assignment are shown in 
Table 1. One of the automata whose partial states were encoded, RAZ, was not generated by 
the program mentioned above. It was obtained from a real control algorithm. 

As it was noted, only the parameters of α-net, i.e. the number of places p, the number of 
transitions t, and the number of sentences s were considered. Besides those, the number of 
maximum complete bipartite subgraphs in the graph G of non-parallelism of partial states of the 
given automaton may be of interest. Algorithm A uses the method that decomposes graph G 
into two subgraphs, G1 and G2, G1, being complete. So, the maximum complete bipartite 
subgraphs were found in G2. The calculations were performed on a computer of AT type with 
the 386 processor. 



6. CONCLUSION 
The technique of investigation of algorithms for state assignment of parallel automata is 
described in this paper. The experimental data show that Algorithms B and C are quite 
competitive to each other, although the speed of Algorithm C is higher than that of Algorithm 
B. Algorithm A is intended to be applied for automata of small dimension. It can be used as a 
standard algorithm and helps one to appreciate the quality of solutions obtained by heuristic 
algorithms.  

Table 1. Experimental results: p, t, and s are parameters of α-nets, b is the number of maximum 
complete bipartite subgraphs of G2. 

Algorithm A Algorithm B Algorithm C Name p t s b 

Code 
length

Run time Code 
length

Run time Code 
length 

Run time 

AP2 20 18 18 75 6 13 min. 28 sec. 7 6 sec. 7 3 sec. 

APR1 20 21 19 8 5 8 sec. 6 7 sec. 5 3 sec. 

APR2 20 21 19 4 5 5 sec. 6 8 sec. 5 3 sec. 

APR3 20 21 15 7 4 6 sec. 5 3 sec. 6 3 sec. 

APR6 20 28 15 43 5 2 min. 23 sec. 6 8 sec. 6 3 sec. 

APR7 20 30 15 55 5 49 sec. 6 8 sec. 6 3 sec. 

APR8 20 15 15 49 5 1 min. 28 sec. 5 5 sec. 5 3 sec. 

RAZ 20 21 19 1033 9 3 h. 46 m. 22 s. 9 8 sec. 10 4 sec. 
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