
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

ON OPTIMAL STATE-ASSIGNMENT OF
SYNCHRONOUS PARALLEL AUTOMATA*

Yury POTTOSIN

Institute of Engineering Cybernetics, National Academy of Sciences of Belarus,
Surganov str., 6, 220012, Minsk, BELARUS, pott@newman.bas-net.by

Abstract. Three algorithms for assignment of partial states of synchronous parallel
automata are considered. Two of them are heuristic, the third one is exact, i.e. the
number of coding variables obtained by this algorithm is minimum. It is based on
covering a non-parallelism graph of partial states by complete bipartite subgraphs.
One of the heuristic algorithms is based on the solving the same problem but it uses
an approximate method for it. The other of them is known as iterative one. The
results of application of these algorithms on some pseudo-random synchronous
parallel automata and the method for generating such objects are given.

Key Words. Parallel Automaton, State-Assignment, Problem of Covering,
Generating Pseudo-Random Objects

1. INTRODUCTION
The parallel automaton is a functional model of a discrete device and is rather convenient to
represent the parallelism of interactive branches of controlled process [17]. The main
distinction between a parallel automaton and a sequential one (finite state machine) is that the
latter can be in only one state at any moment while the parallel automaton can be in several
partial states simultaneously. A set of partial states a parallel automaton can be at
simultaneously is called a total state. Any two partial states in which an automaton can be
simultaneously are called parallel.

A parallel automaton is described by the set of strings of the form µi : − wi → vi → νi, where wi
and vi are elementary conjunctions of Boolean variables that define the condition of transition
and the output signals respectively, µi and νi are labels that represent the sets of partial states of
the parallel automaton [17]. Every such a string should be understood as follows. If the total
state of the parallel automaton contains all the partial states from µi and the event wi has been
realised in the input variable space, then the automaton is found to be in the total state that
differs from the initial one by containing partial states from νi instead of those from µi. The
values of output variables in this case are set to be such that vi = 1.

*This work is supported by ISTC project B-104-98.

If − wi and → vi are removed from the string it can be interpreted as a transition (µi, νi) in a
Petri net. So, the set of such reduced strings can be considered as a Petri net being a “skeleton”
of the given parallel automaton. Here we consider only those parallel automata whose skeleton
is an α-net [17] that is a subclass of live and safe expanded nets of free choice which are
studied in [6].

In state assignment of a parallel automaton, partial states are encoded by ternary vectors in the
space of introduced internal variables that can take values 0, 1 or “−”, orthogonal vectors being
assigned to non-parallel states and non-orthogonal vectors to parallel states [2, 15, 16]. The
orthogonality of ternary vectors means existence of a component having opposite values (0 and
1) in these vectors. It is natural to minimise the dimension of the space that results in the
minimum of memory elements (flip-flops) in the circuit implementation of the automaton.

The methods to solve the state assignment problem for synchronous parallel automata are
surveyed in [4]. Two heuristic algorithms are considered here. One of them is based on iterative
method [3], the other reduces the minimisation of the number of memory elements to the
problem of covering a non-parallelism graph of partial states by complete bipartite subgraphs
[9]. To solve the problem of covering it uses a heuristic technique. The third algorithm
considered here is exact, i.e. the number of coding variables (memory elements) obtained by
this algorithm is minimum. It also finds a cover of a non-parallelism graph of partial states by
complete bipartite subgraphs but using an exact technique [11]. These three algorithms were
used to encode partial states of a number of synchronous parallel automata obtained as pseudo-
random objects. The pseudo-random parallel automata with the given parameters were
generated by a special computer program. The method for generating such objects is described.
The results of this experiment allow one to decide about the quality of the algorithms. Similar
experiments are described in [18] where another approach was investigated and the pseudo-
random objects were Boolean matrices interpreted as partial states orthogonality matrices of
parallel automata.

2. EXACT ALGORITHM
Below we refer to this algorithm as Algorithm A. It is based on covering a non-parallelism
graph G of partial states by complete bipartite subgraphs. Let the complete bipartite subgraphs
B1, B2, ... , Bm form a shortest covering of G, and Bk for every k = 1, 2, ... , m be associated with
a Boolean coding variable zk so that zk = 1 for the states relative to one partite set of Bk and
zk = 0 for the states relative to the other. Then the values of coding variables z1, z2, ... , zm
represent the solution sought for. The covering is considered here as every edge of G belongs to
at least one Bk.

The first step to the solution is finding all maximum complete bipartite subgraphs of G. Three
ways to do it are given in [10, 15]. Then one must obtain the shortest covering of edge set of G
by those complete bipartite subgraphs. For decreasing the dimension of the covering problem
the reduction rules for initial graph are used in construction the covering matrix. These rules are
described in [15]. Another way to decrease the dimensions of the problem is given in [11]. It
can be applied if G can be represented as G = G1 + G2, i.e. in the form of the result of join
operation on two graphs [7]. The decrease is achieved if one of G1 and G2, say G1, is a
complete graph. This is typical for an automaton whose “skeleton” is α-net. Then the covering
problem is solved only for G2. When the cover is obtained the codes of the states which are
associated with the vertices of G2 are chosen as shown above. These codes form a Boolean
space of coding variables. If they don’t occupy all the space, the codes of the states associated
with the vertices of G1 are placed in the rest. The space is extended, if necessary, to the size
enough for placing all state codes. In this case a non-redundant cover must be found rather than

a shortest one. Algorithm A realises this method. The idea of using decomposition as the means
to reduce the dimension of the task is rather fruitful. For example, one can see in [8] another
case of using decomposition to decrease the dimension of the problem of our field.

3. HEURISTIC ALGORITHMS

3.1. Algorithm B
The NP-hardness of covering problem [5] doesn’t allow it always to be solved in acceptable
time. Therefore the heuristic algorithm is proposed in [9] that obtains in many cases the shortest
cover. We call it Algorithm B. It consists of two stages. At the first stage the sequence of
graphs G2, G3, ... , Gn = G is considered, where G is the non-parallelism graph of the given
automaton with V = {v1, v2, ... , vn} as the set of vertices, and Gi is the subgraph of G induced
by the set of vertices Vi = {v1, v2, ... , vi}. Having the cover of Gi the transition from it to the
cover of Gi+1 is carried out. At the second stage the obtained cover is improved (if possible).
This improvement consists in removing some complete bipartite subgraph from the covering
and in the attempt of reconstruction the cover by adding edges to remained subgraphs. This
procedure repeats for all elements of the cover. The complete bipartite subgraphs are obtained
concurrently with constructing the cover.

3.2. Algorithm C
The other heuristic algorithm is based on the iterative method suggested in [3]. We refer to this
algorithm as Algorithm C. The iterative method assumes the definition of parallelism relation
and an initial coding matrix for partial states (the initial matrix may be empty). The matrix is
extended in the process of coding by introducing additional coding variables that makes it
possible to separate non-parallel partial states in certain pairs. To separate two states means to
put opposite values (0 and 1) to some coding variable in the codes of these states. The method
consists in iterative executions of two procedures: introducing a new coding variable and
defining its values in codes of non-separated yet non-parallel partial states. These procedures
are being executed until all non-parallel states have been separated. Minimising the number of
introduced coding variables the method minimises the Hamming distance between codes of
states related by transitions as well. The aim of this is the minimisation of the number of
switchings of RS type flip-flops in circuit realisation of a parallel automaton.

Introducing a new coding variable is accompanied with separating the maximal number of non-
separated yet non-parallel partial states by this variable. For this purpose at each step of the
procedure of defining the values of the due variable, a state is chosen to encode by this
variable. This state should be separated from the maximal number of states encoded already by
this variable. The number of states that are not separated from the chosen one and have been
encoded by this variable must be maximum. A new coding variable is introduced if the inner
variables having been introduced don’t separate all non-parallel partial states from each other.

4. GENERATING PARALLEL AUTOMATA

Any string of the form µi : − wi → vi → νi in automaton specification we call a transition, and a
set of transitions with the same µi a sentence. The algorithm for generating parallel automata is
described in detail in [12] where a parallel automaton is constructed as a system of three
pseudo-random objects. They are the skeleton of the automaton that is an α-net specified in the
form of a sequence of pairs (µi, νi), the ternary matrix X representing conjunctions wi, and the

ternary matrix Y representing conjunctions vi. In our task the α-net is enough, therefore we
shouldn’t describe the way of generating X and Y here.

The given beforehand parameters of every pseudo-random α-net generated by a special
computer program are the number of places (partial states of the automaton) p, the number of
transitions t, and the number of sentences s.

Generating pseudo-random parallel automata as systems of three mentioned above objects with
given beforehand parameters would not be difficult if no correctness demands exist without
which there is no sense to execute algorithms intended for such automata. Proceeding from the
correctness properties of a parallel control algorithm that are named in [16], let us consider the
following properties of a parallel automaton, that guarantee its correctness in our case. It must
be irredundant (there is no transition that can be never done), recoverable (it can return to the
initial total state from any other one), and self-coordinated (any transition cannot be started
before it ceases).

Irredundancy, recoverability, and self-co-ordination of a parallel automaton corresponds to
liveness and safety of the related α-net [16]. The characteristic properties of α-net are the initial
marking of it consisting of one element, {1}, and the sets of input places of two different
transitions coinciding or disjoining. In the Petri net theory the reduction methods for checking
liveness and safety are well known [1], where the initial net is transformed according to certain
rules with preserving these properties. The transformations reduce the dimension of a given net
and so facilitate the checking liveness and safety of the net.

To check liveness and safety of α-nets the application of two rules is sufficient [16]. The first
rule consists in deleting loops i.e. the transitions where µi = νi. The second one is as follows.
Let a set of places π not containing place 1 be such that for every transition (µi, νi), π ∩ µi ≠ ∅
implies π = µi and π ∩ νi = ∅, and π ∩ νi ≠ ∅ implies π ⊆ νi. Besides, there exists at least one
transition with π ∩ νi ≠ ∅. Then all transitions (µj, νj) with π = µi are removed and every
transition (µk, νk) with π ⊆ νk is substituted by the set of transitions that are obtained from
(µk, νk) by replacing π by sets νj from those transitions (µj, νj) where π = µj. A live and safe α-
net is proved in [14] to be completely reducible, i.e. the application of these rules leads to the
net that consists of the only transition (1,1). This implies the way of generating live and safe α-
nets that consists in transformations that are inverse to the above.

5. EXPERIMENTAL RESULTS
Algorithms A, B, and C are realised in computer programs and the corresponding modules are
included as components into ISAPR that is a research CAD system [13]. The program for
generating pseudo-random parallel automata is included into ISAPR as well. This program was
used to generate several parallel automata. The results of partial state assignment are shown in
Table 1. One of the automata whose partial states were encoded, RAZ, was not generated by
the program mentioned above. It was obtained from a real control algorithm.

As it was noted, only the parameters of α-net, i.e. the number of places p, the number of
transitions t, and the number of sentences s were considered. Besides those, the number of
maximum complete bipartite subgraphs in the graph G of non-parallelism of partial states of the
given automaton may be of interest. Algorithm A uses the method that decomposes graph G
into two subgraphs, G1 and G2, G1, being complete. So, the maximum complete bipartite
subgraphs were found in G2. The calculations were performed on a computer of AT type with
the 386 processor.

6. CONCLUSION
The technique of investigation of algorithms for state assignment of parallel automata is
described in this paper. The experimental data show that Algorithms B and C are quite
competitive to each other, although the speed of Algorithm C is higher than that of Algorithm
B. Algorithm A is intended to be applied for automata of small dimension. It can be used as a
standard algorithm and helps one to appreciate the quality of solutions obtained by heuristic
algorithms.

Table 1. Experimental results: p, t, and s are parameters of α-nets, b is the number of maximum
complete bipartite subgraphs of G2.

Algorithm A Algorithm B Algorithm C Name p t s b

Code
length

Run time Code
length

Run time Code
length

Run time

AP2 20 18 18 75 6 13 min. 28 sec. 7 6 sec. 7 3 sec.

APR1 20 21 19 8 5 8 sec. 6 7 sec. 5 3 sec.

APR2 20 21 19 4 5 5 sec. 6 8 sec. 5 3 sec.

APR3 20 21 15 7 4 6 sec. 5 3 sec. 6 3 sec.

APR6 20 28 15 43 5 2 min. 23 sec. 6 8 sec. 6 3 sec.

APR7 20 30 15 55 5 49 sec. 6 8 sec. 6 3 sec.

APR8 20 15 15 49 5 1 min. 28 sec. 5 5 sec. 5 3 sec.

RAZ 20 21 19 1033 9 3 h. 46 m. 22 s. 9 8 sec. 10 4 sec.

REFERENCES
[1] S.M.Achasova, O.L.Bandman, Correctness of Concurrent Computing Processes, Nauka,

Siberian Division, Novosibirsk, 1990 (in Russian)
[2] M.Adamski, M.Wegrzyn, "Field programmable implementation of current state machine",

Proc. of the Third International Conference on Computer-Aided Design of Discrete
Devices (CAD DD’99), Vol.1, Institute of Engineering Cybernetics, NAS Belarus, Minsk,
pp.4-12, 1999

[3] L.D.Cheremisinova, "State assignment for parallel synchronous automata", Izvestia AN
BSSR, Ser. fisiko-tehnicheskih nauk, No.1, pp. 86-91, 1987 (in Russian)

[4] L.D.Cheremisinova, Yu.V.Pottosin, "Assignment of partial states of a parallel synchronous
automaton, Proceedings of the International Conference on Computer-Aided Design of
Discrete Devices CAD DD’95". Wydawnictwo Uczelniane Politechniki Szczecinskiej,
Minsk-Szczecin, pp. 85-88, 1995

[5] M.R.Garey, D.S.Johnson, Computers and Intractability: A Guide to the Theory on NP-
completeness, W.M.Freeman & Company, San Francisco, Ca., 1979

[6] M.T.Hack “Analysis of production schemata by Petri nets”, Project MAC TR-94,
Cambridge, 1972

[7] F.Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, Mass., 1969
[8] A.Karatkevich, “Hierarchical decomposition of safe Petri nets”, Proc. of the Third

International Conference on Computer-Aided Design of Discrete Devices (CAD DD’99),
Vol.1, Institute of Engineering Cybernetics, NAS Belarus, Minsk, pp. 34-39, 1999

[9] Yu.V.Pottosin, "Covering a graph by complete bipartite subgraphs", Design of Discrete
Systems, Institute of Engineering Cybernetics of Academy of Sciences of Belarus, Minsk,
pp. 72-84, 1989 (in Russian)

[10] Yu.V.Pottosin, “Finding maximum complete bipartite subgraphs in a graph”
Automatization of Logical Design of Discrete Systems, Institute of Engineering Cybernetics
of Academy of Sciences of Belarus, Minsk, pp. 19-27, 1991 (in Russian)

[11] Yu.V.Pottosin, "A method for encoding the partial states of a parallel automaton with
minimal-length codes", Automatic Control and Computer Sciences, N 6, Allerton Press,
Inc., New York, pp. 45-50, 1995

[12] Yu.V.Pottosin, “Generating parallel automata”, Methods and Algorithms for Logical
Design, Institute of Engineering Cybernetics of Academy of Sciences of Belarus, Minsk,
pp. 132-142, 1995 (in Russian)

[13] N.R.Toropov, Research CAD System for Discrete Control Devices: Materials on
Software for Computers, Institute of Engineering Cybernetics of Academy of Sciences of
Belarus, Minsk, 1994 (in Russian)

[14] V.V.Tropashko, “Proof of the conjecture of complete reducibility of α-nets”, Design of
Logical Control Systems, Institute of Engineering Cybernetics of Academy of Sciences of
BSSR, Minsk, pp. 13-21, 1986 (in Russian)

[15] A.D.Zakrevskij, “Optimization of matrix of partial state assignment for parallel
automata”, Formalization and Automatization of Logic Design, Institute of Engineering
Cybernetics of Academy of Sciences of Belarus, Minsk, pp. 63-70, 1993 (in Russian)

[16] A.D.Zakrevskij, "Parallel logical control algorithms: verification and hardware
implementation", Computer Science Journal of Moldova, Vol.4, No.1, pp. 3-19, 1996

[17] A.D.Zakrevskij, Parallel Algorithms for Logical Control. Institute of Engineering
Cybernetics of National Academy of Sciences of Belarus, Minsk, 1999 (in Russian)

[18] A.Zakrevskij, I.Vasilkova, "A quick algorithm for state assignment in parallel
automata", Proc. of the Third International Conference on Computer-Aided Design of
Discrete Devices (CAD DD’99), Vol.1, Institute of Engineering Cybernetics, NAS Belarus,
Minsk, pp.40-44, 1999

