
The International Workshop  
on Discrete-Event System Design, DESDes’01, 

June 27÷29, 2001; Przytok near Zielona Gora, Poland 
 

DIGITAL HARDWARE IMPLEMENTATION OF 
PETRI NET BASED SPECIFICATIONS: DIRECT 

TRANSLATION FROM SAFE AUTOMATION PETRI 
NETS TO CIRCUIT ELEMENTS 

Murat UZAM, Mutlu AVCI and M. Kürşat YALÇIN  

 
Niğde Üniversitesi, Mühendislik-Mimarlık Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü, 

51100 NİĞDE, TURKEY. Tel: ++ 90 388 225 01 15, Fax: ++ 90 388 225 01 12,  
e-mail: murat_uzam@hotmail.com, <mutluavci, kursat_yalcin>@yahoo.com  

Abstract: In this paper, a new method is proposed for the digital hardware 
implementation of Petri net based specifications. The purpose of this paper is to 
introduce a new discrete event control system paradigm, where the control system is 
modelled with extended Petri nets and implemented as an asynchronous controller using 
circuit elements. The results provided in this paper on the digital hardware 
implementation of Petri nets may be view as a better version of a previously introduced 
method [1], in terms of the implementation of transitions.  

Key Words. Discrete event systems, Petri nets, hardware implementation,       
asynchronous controllers. 

1. INTRODUCTION 
 
Discrete event systems (DES), examples of which include communication networks, 
manufacturing systems, robots, etc.,  exhibit properties such as non-determinism, conflict, and 
concurrency. The study (i.e. design, analysis, synthesis, etc.) of DES has been carried out 
mainly by using two modelling techniques: finite state machines (FSM) and Petri nets. FSM 
based studies suffer from so called state explosion problem. FSMs provide sequential models. 
When using FSMs graphical visiualisation of the modelled system can not be realised easily 
[2]. Petri nets have been used as an alternative formalism for the study of DESs due to their 
easily understood graphical representation in addition to their well-formed mathematical 
formalism. In this paper, we are concerned with the control of DES and we use Petri nets. The 
control of DESs is done firstly by modelling the controller as a Petri net model and then by 
implementing it in software or hardware. The implementation is carried out by simulating the 
Petri net model in terms of software or hardware structures. The software implementation has 
been done using either high level languages or low level languages. Synchronous or 
asynchronous controllers of Petri net based specifications have been  obtained as hardware 
implementation. For a detailed information on Petri nets and digital hardware design, the 
reader is referred to [3]. In an asynchronous circuit, there is no global clock, i.e. they are self 



 

timed. Asynchronous circuits can be viewed as hardwired versions of parallel and distributed 
programs. The program statements are physical components, i.e. logic gates, memory 
elements, etc. Asynchronous circuits are better than the synchronous counterparts in terms of 
performance, robustness, low power, low electromagnetic emission, modularity and re-use, 
and testability [3]. In this paper, we deal with asynchronous circuit implementation of Petri 
net based specifications. This type of implementation is carried out based on the idea of 
“physical simulation” and achieved by associating each place in the Petri net with a memory 
latch. Examples of this style can be found in [1, 4, 5, 6].  
 
In this paper, a new method is proposed for the digital hardware implementation of Petri net 
based specifications. The purpose of this paper is to introduce a new discrete event control 
system paradigm, where the control system is modelled with extended Petri nets and 
implemented as an asynchronous controller using circuit elements. The results provided in 
this paper on the digital hardware implementation of Petri nets may be view as a better 
version of a previously introduced method [1], in terms of the implementation of transitions. 
The remainder of this paper is organised as follows: The next section defines safe automation 
Petri nets (SAPN). In the 3rd section,  the digital hardware implementation of SAPN is 
explained. Finally, conclusions are given.  
 
 
2. SAFE AUTOMATION PETRI NETS 
 
Automation Petri nets (APN) have recently been introduced as a new formalism for the design 
of Discrete Event Control Systems [2]. Since ordinary Petri nets do not deal with sensors and 
actuators, the Petri net concepts are extended, by including actions and sensor readings as 
formal structures within the APN. These extensions involve extending the Petri nets to 
accommodate sensor signals at transitions and to assign level actions to places (and similarly 
to assign impulse actions to transitions). In this section, we define Safe (1-bounded) 
Automation Petri nets (SAPN) to be used for direct translation from Petri nets to circuit 
elements. A typical discrete event control system (DECS) is shown in Figure 1.(a). It consists 
of a discrete event system (DES), to be controlled and a discrete event controller (DEC). 
Sensor readings are regarded as inputs from the DES to the DEC, and control actions are 
considered as outputs from the DEC to the DES. The main function of the DEC is to 
supervise the desired DES operation and to avoid forbidden operations. To do this, the DEC 
processes the sensor readings and then it forces the DES to conform to the desired 
specifications through control actions. Petri nets can be used to design such DECs. However, 
ordinary Petri nets do not deal with actuators or sensors. Because of this, it is necessary to 
define a Petri net-based controller (Automation Petri net - APN), which can embrace both 
actuators and sensors within an extended Petri net framework. An SAPN is shown in Figure 
1.(b). In the SAPN, sensor readings can be used as firing conditions at transitions. The 
presence or absence of sensor readings can be used in conjunction with the extended Petri net 
pre-conditions to fire transitions. In the SAPN, two types of actuations can be considered, 
namely impulse actions and level actions. Level actions are associated with places, while 
impulse actions are associated with transitions. With these additional features, it is possible to 
design Discrete Event Control Systems. Figure 1.(c) shows how an SAPN can be used as a 
DEC in a DECS. 



 

 
(a)                                  (b)                                   (c) 

Fig. 1. (a). A typical discrete event control system (DECS). (b). Safe Automation Petri Net (SAPN). 
(c). APN used as a controller in a DECS. 

 
Formally, a Safe Automation Petri Net can be defined as follows: 

 

SAPN = (P, T, Pre, Post, In, En, χχχχ, Q, M0 ) 
 
Where,  
• P = {p1, p2, ..., pn} is a finite, nonempty set of places, 
• T = {t1, t2, ..., tm} is a finite, nonempty set of transitions, P ∪ Τ ≠ ∅ and P ∩ T= ∅, 
• Pre: (P×T) → {0,1} is an input function that defines ordinary arcs from places to 

transitions,  
• Post: (T×P) → {0,1} is an output function that defines ordinary arcs from transitions to 

places, 
• In: (P×T) → {0,1} is an inhibitor input function that defines inhibitor arcs from places to 

transitions, 
• En: (P×T) → {0,1} is an enabling input function that defines enabling arcs from places to 

transitions, 
• χ = {χ1, χ2, ..., χm} is a finite, nonempty set of firing conditions associated with 

transitions, 
• Q = {q1, q2, ..., qn} is a finite set of level actions that might be assigned to places or 

impulse actions that might be assigned to transitions, 
• M0 : P → {0,1} is the initial marking. 
 
The SAPN consists of two types of nodes called places, represented by circles ( � ), and 
transitions, represented by bars ( — ). There are three types of arcs used in the SAPN, 
namely, ordinary arcs, represented by a directed arrow ( ), inhibitor arcs, represented by 
an arc, whose end is a circle ( ), and finally enabling arcs, represented by a directed 
arrow, whose end is empty ( ). Directed ordinary arcs connect places to transitions and 
vice versa, while enabling and inhibitor arcs connect only places to transitions. The number of 
tokens in places represent the current state of the system and firing of a transition represents 
the movement of the system from one state to another state. Each transition has a set of input 
and output places, which represent the pre-condition and post-condition of the transition. The 
level actions (Q), may be assigned to places, and the impulse actions may be assigned to 
transitions. Level actions may be enabled when there is a token at a place, while impulse 
actions may be enabled at the instant when a transition is fired. More than one action may be 
assigned to a place or a transition. Firing conditions in the SAPN are recognised by external 
events (signals) such as sensor readings, switch positions, etc. Six firing conditions, may be 
associated with a transition t: χ, χ , ↑χ, χ , χ↓ and, χ . The firing condition χ is a Boolean 
variable that can be 0, in which case related transition t is not allowed to fire, or it can be 1, in 



 

which case related transition t is allowed to fire if it is enabled, i.e. all input places have one 
token each. The firing condition χ is the complement of the firing condition χ and is a 
Boolean variable that can be 1, in which case related transition t is not allowed to fire, or it 
can be 0, in which case related transition t is allowed to fire if it is enabled. The rising-edge-
firing-condition ↑χ is a Boolean variable that can be 0, in which case related transition t is not 
allowed to fire, or it can be 1, in which case related transition t is allowed to fire if it is 
enabled. The complement-rising-edge-firing condition χ  is a Boolean variable that can be 1, 
in which case related transition t is not allowed to fire, or it can be 0, in which case related 
transition t is allowed to fire if it is enabled. The falling-edge-firing-condition χ↓ is a Boolean 
variable that can be 1, in which case related transition t is not allowed to fire, or it can be 0, in 
which case related transition t is allowed to fire if it is enabled. Finally, The complement-
falling-edge-firing-condition χ is a Boolean variable that can be 0, in which case related 
transition t is not allowed to fire, or it can be 1, in which case related transition t is allowed to 
fire if it is enabled. The marking of the SAPN is represented by the number of tokens in 
places. Tokens are represented by black dots (•). Movement of tokens between places 
describes the evolution of the SAPN and is accomplished by the firing of the enabled 
transitions. The following rules are used to govern the flow of tokens: 
 
Enabling Rules:  
1. If the input place p1 of a transition t1 is connected to t1 with an ordinary arc Pre(p1,t1), then 

t1 is said to be enabled when p1 contains a token, i.e., M(p1) = 1. 
2. If the input place p1 of a transition t1 is connected to t1 with an enabling arc En(p1,t1), then 

t1 is said to be enabled when p1 contains a token, i.e., M(p1) = 1. 
3. If the input place p1 of a transition t1 is connected to t1 with an inhibitor arc In(p1,t1), then 

t1 is said to be enabled when p1 contains no token, i.e., M(p1) = 0.  
 
Firing Rules: In the SAPN, an enabled transition t can or can not fire depending on the 
external firing condition χ of t. These firing conditions can be either of the above mentioned 
firing conditions, i.e. χ, χ , ↑χ, χ , χ↓ or χ , namely positive level,  zero level, rising edge, 
complement rising edge, falling edge or complement falling edge of a (signal) sensor reading 
or a switch position. Broadly speaking, a firing condition of a transition t may include more 
than one sensor reading with ‘AND’, ‘OR’ and ‘NOT’ logical operators. When dealing with 
more than one sensor readings as firing conditions, the logical operators of firing conditions 
must be taken into account accordingly. In the special case, where χ = 1, transition t is always 
allowed to fire when it is enabled. When an enabled transition t fires with a related firing 
condition χ, it removes one token from each input place pi and deposits, at the same time, one 
token to each output place po. It should be noted that, the firing of an enabled transition t does 
not change the marking of the input places that are connected to t only by an enabling or an 
inhibitor arc.  
 
3. DIGITAL HARDWARE IMPLEMENTATION OF SAFE AUTOMATION PETRI 
NETS : DIRECT TRANSLATION FROM SAPN TO CIRCUIT  ELEMENTS 
 
The direct translation method from SAPN to circuit elements, proposed in this paper, is based 
on the idea of physical simulation of every Petri net marking reachable from the initial 
marking in terms of the state of the circuit. In order to achieve the direct translation, the 
following three steps are followed: i) each place in the SAPN is associated with a memory 
element, i.e. an SR-flip-flop (SR-latch), ii) each transition in the SAPN is implemented with a 



 

logical gate (NAND gate), iii) the initial marking is set-up by using an RC (Resistor and 
Capacitor) element. Let us now consider each of these three steps: 
 
i) The first step in achieving the direct translation is to use a memory element to represent the 
presence or absence of a token in a place. If there is a token in a place then the output of the 
memory element is set to 1. In contrast, if there is no token in a place then the output of the 
memory element is reset to 0. To implement this operation we use an SR-flip-flop, as shown 
in Fig. 2.(a). An SR-flip-flop is constructed from two NAND gates connected back to back. 
The cross-coupled connections from the output of one gate to the input of the other gate 
constitutes a feedback path. Therefore, the circuit is classified as asynchronous. Each flip-flop 
has two outputs; Q and Q , and two inputs; set (S) and reset (R). The truth table of the SR-flip-
flop is given in Fig. 2.(d). The application of a momentary 0 to the S input causes output Q to 
go to 1 and Q  to go to 0. The outputs of the circuit do not change when the S input returns to 
1. A momentary 0 applied to the R input causes an output of Q = 0 and Q  = 1. The state of the 
flip-flop is always taken from the value of its normal output Q. When Q = 1, we say that the 
flip-flop stores a 1 and is in the set state.  When Q = 0, we say that the flip-flop stores a 0 and 
is in the reset state. The SR-flip-flop manifests an undesirable condition if both inputs go to 0 
simultaneously. When both inputs are 0, outputs Q and Q  will go to 1, a condition which is 
normally meaningless in flip-flop operation.  In Fig. 2.(b) an SAPN is shown, in which there 
are two places;  p1 and its complement p1 , and two transitions; t1 and t2, with firing 
conditions  χ1 and χ2 respectively. This is an explicit representation of the safe place p1. The 
implementation of places using the SR-flip-flop is shown in Fig. 2.(c). Output Q of the SR-
flip-flop is used to represent place p1 and output Q  is used to represent place p1 . When there 
is a token in p1,  the SR-flip-flop is set, i.e. Q = 1 and Q  = 0. When there is a token in p1 ,  the 
SR-flip-flop is reset, i.e. Q = 0 and Q  = 1. It is assumed that the model will not permit both 
outputs becoming Q = 1 and Q  = 1. That is to say that the designer must take some action to 
assure that S = R = 0 will never occur. 
 

 

 
 
 

S    R   Q   Q  Comment 
0   1 1    0 Set 
1    1 1    0 After S = 0 and R = 1 
1    0 0    1 Reset 
1    1 0    1 After S = 1 and R = 0 
0   0 1    1 Not allowed 

(d) 

Fig. 2. a). An SR-flip-flop, b) an SAPN, c) the implementation of places.  
d). The truth table of the SR-flip-flop, 

 
ii) The second step in achieving the direct translation is to use a NAND gate to implement 
transition in SAPN. The behaviour of a transition in SAPN may be summarised as follows: IF 
there is a token each in the input places of a transition t AND the firing condition χ of t 
occurs, THEN all the tokens are removed from the input places and one token each is 
deposited to the output places of t. To show how this behaviour is implemented, the SAPN 
shown in Fig. 3.(a) is used. In this case, the transition t fires when all input places p1, p2, p3, 



 

... have one token each and the firing condition χ occurs. When t fires it removes all the 
tokens from the input places p1, p2, p3, ..., and at the same time, it deposits one token each to 
the output places, p11, p12, p13,... . To implement the transition t, the structure shown in Fig. 
3.(b) is used. In this case, when all input flip-flops are set and χ occurs t is fired by resetting 
all the input flip-flops and at the same time by setting all the output flip-flops. Please note that 
the difference between our approach and [1] is that, in [1] the removal of tokens from input 
places and adding tokens to output places has a duration and there is an intermediate state 
between the two operations, while in our approach  the removal of tokens from input places 
and adding tokens to output places is instantaneous. Fig. 3.(c) shows the implementation of 
transitions t1 and t2 of Fig. 2(c). In the SAPN, t1 fires when there is a token in p1  and χ1 
occurs. When fired, t1 removes the token from p1  and deposits a token in p1. The NAND gate 
1 implements t1 as follows: when output p1  = 1 and χ1 occurs, i.e. χ1 becomes 1, p1 is set to 1 
by applying an instantaneous 0 from the output of the NAND gate 1 to the S input of the flip-
flop and at the same time the output p1  is reset, i.e. p1  = 0. The same applies to t2 in a similar 
manner.   

 p1
 
 

 p3
 
  

 p2
 
  

t 

χχχχ    

.

.

.

 p11 
 

 p13
 
  

 p12
 
  

.

.

.
                

(a)                                                     (b)                                                   (c) 
Fig. 3. a). A transition in SAPN. b).Implementation of  the transition, b). Implementation of transitions 

t1 and t2 of Fig. 2.(c). 
 
iii) The third and last step is about setting-up the initial marking by using an RC (Resistor and 
Capacitor) element. It is necessary for proper functioning to set-up the initial marking before 
operating the circuit. It is a common practice to use an RC element to establish the power on 
reset (POR) and at the same time to use a button connected parallel to the capacitor such that 
at any time desired by pressing the button we are able to set the system back to the initial 
marking. The time delay τ = R.C defines how long the setting-up time will be for the initial 
marking. How this process is accomplished, is shown in Fig. 4.(a). When the power is first 
applied to the circuit, a 0 is applied, for the period of  τ time, to the S inputs of flip-flops, 
which represent places with initial marking 1, i.e. all places p1, p2, p3, ... are set to 1. At the 
same time, a 0 is also applied to the R inputs of flip-flops, which represent places with initial 
marking 0, i.e. all places p11, p12, p13, ... are reset to 0. After the power is being applied to 
the circuit, at any time it is also possible to set-up the circuit back to the initial marking by 
pressing the button B. An example SAPN is shown in Fig. 4.(b). The hardware 
implementation of the SAPN shown in Fig. 4.(b) is given in Fig. 4.(c). In this circuit places 
and transitions are implemented as described before. The initial marking, i.e. M0(p1, p1 ,p2 
, p2 ) = (1,0,0,1)T, is implemented by setting the first flip-flop and by resetting the second flip-
flop.   



 

       

t1   

t2

χχχχ  1 

χχχχ
 

  

 

2 

t3 χχχχ
 

  

 

3 

 p1
 
  

 p1
 
  

 p2
 
  

 p2
 
  

         
                       (a)                                       (b)                                                    (c) 

 
Fig. 4. a). Setting-up the initial marking. b). An example SAPN. c). Setting-up the initial marking of 

the SAPN shown in Fig. 4.(b). 
 

To show how our technique is applied to the hardware implementation of  the SAPN, in this 
paper we consider the following SAPN structures:  

• Enabling arc 
• Inhibitor arc 
• Actions 

Please, note that for the sake of simplicity the implementation of the initial marking in the 
following SAPN structures are not shown.  
 
3.1. Hardware Implementation of the Enabling Arc 
The modelling power of Petri nets can be extended by adding the ‘one testing’ ability, i.e., the 
ability to test whether a place has a token. This is achieved by introducing an enabling arc. 
The enabling arc connects an input place to a transition and is represented by a directed arrow, 
whose end is empty. The presence of an enabling arc connecting an input place to a transition 
means that the transition is only enabled if the input place has a token. The firing does not 
change the marking in the enabling arc connected places. In an SAPN, an enabling arc,  
En(p2,t2),  is shown in Fig. 5.(a). The transition t2 is fired if both p1 and p2 have one token 
each and firing condition χ2 occurs. When t2 is fired, a token is removed from place p1 and a 
token is deposited into the output place p3, but the marking of enabling arc connected place 
p2 does not change. The transition t2 is not enabled to fire, if there is no token in place p2. 
Fig. 5.(b) shows the complement places of places p1, p2 and p3. The hardware 
implementation of the SAPN shown in Fig. 5.(b) is given in Fig. 5.(c). In this circuit places 
and transitions are implemented as described before.  

χχχχ    1 

χχχχ
 

  

 

2 

3 

χχχχ    
4 

χχχχ
 

  

 

5 

χχχχ
 

  

 

 p1
 
 

 p3
 
  

 p2
 
  

t1   t4  
 

t2  
 

t5  
 

t3  
        

t1   

 p1
 
 

χχχχ    1 

χχχχ
 

  

 

2 

 p3
 
  χχχχ

 

  

 

3 

 p1
 
  

χχχχ    4 

χχχχ
 

  

 

5 

 p3
 
  

 p2
 
  

 p2
 
  

t2  
 

t3  
 

t4  
 

t5  
 

      
                       (a)                                       (b)                                                    (c) 
Fig. 5. a). An enabling arc, En(p2,t2), in an SAPN. b). The complement places of places p1, p2 and p3. 

c). Hardware implementation of the SAPN shown in Fig. 5.(b). 



 

 
3.2. Hardware Implementation of the Inhibitor Arc 
The modelling power of Petri nets can be extended by adding the ‘zero testing’ ability, i.e., 
the ability to test whether a place has no token. This is achieved by an inhibitor arc. The 
inhibitor arc connects an input place to a transition and is represented by an arc, whose end is 
a circle. The presence of an inhibitor arc connecting an input place to a transition means that 
the transition is enabled if the input place has no token. The firing does not change the 
marking in the inhibitor arc connected places. In an SAPN, an inhibitor arc, In(p2,t2),  is 
shown in Fig. 6.(a). The transition t2 is fired if place p1 has a token and p2 has no token and 
firing condition χ2 occurs. When t2 is fired, a token is removed from the input place p1 and a 
token is deposited into the output place p3, but the marking of inhibitor arc connected place 
p2 does not change. The transition t2 is not enabled to fire, if there is a token in place p2. Fig. 
6.(b) shows the complement places of places p1, p2 and p3. Note that the inhibitor arc  
In(p2,t2), shown in Fig. 6.(a), can be replaced by the enabling arc En(p2,t2). The hardware 
implementation of the SAPN shown in Fig. 6.(b) is given in Fig. 6.(c). In this circuit, places 
and transitions are implemented as described before.  

χχχχ    1 

χχχχ
 

  

 

2 

3 

χχχχ    
4 

χχχχ
 

  

 

5 

χχχχ
 

  

 

 p1
 
 

 p3
 
  

 p2
 
  

t1   t4  
 

t2  
 

t5  
 

t3  
         

t1   

 p1
 
 

χχχχ    1 

χχχχ
 

  

 

2 

 p3
 
  χχχχ

 

  

 

3 

 p1
 
  

χχχχ  4 

χχχχ
 

  

 

5 

 p3
 
  

 p2
 
  

 p2
 
  

t2  
 

t3  
 

t4  
 

t5  
 

            
             (a)                                       (b)                                                    (c) 

 
Fig. 6. a). An inhibitor arc, In(p2,t2), in an SAPN. b). The complement places of places p1, p2 and p3. 

c). Hardware implementation of the SAPN shown in Fig. 6.(b). 
 
3.3. Hardware Implementation of Actions 
In the SAPN, two types of actuations can be considered, namely impulse actions and level 
actions. Impulse actions are associated with transitions and they are enabled at the instant, 
when the related transition is being fired. Level actions are associated with places and they are 
enabled when there is a token in the related place. More than one action may be assigned to a 
transition or a place. Fig.  7.(a) shows an SAPN in which there is an impulse action assigned 
to t2, and there is a level action assigned to p3. The hardware implementation of the SAPN 
shown in Fig. 7.(a) is given in Fig. 7.(b). In this circuit, places and transitions are 
implemented as described before.  



 

χχχχ     

χχχχ
 

  

 

3 

4 

 p2
 
  

t4  
 

2 

 p3
 
  

χχχχ     

1 

 p1
 
  

χχχχ     t1  
 

t2  
 

t3  
 

Action 2
(Level action)

 p3
 
  

 p1
 
  

 p2
 
  

Action 1
(Im pulse action)

(a) (b) 
Fig. 7. a). Actions in an SAPN. b). Hardware implementation of the SAPN shown in Fig. 7.(a). 

 
 

4. CONCLUSIONS 
 
In this paper, a new method has been proposed for the digital hardware implementation of 
Petri net based specifications. The purpose of this paper has been to introduce a new discrete 
event control system paradigm, where the control system is modelled with extended Petri nets 
and implemented as an asynchronous controller using circuit elements. The results provided 
in this paper on the digital hardware implementation of Petri nets may be view as a better 
version of a previously introduced method [1], in terms of the implementation of transitions. 
Some Petri net structures, such as join, merge, fork, conflict, toggle, select, timed-transition 
have already been implemented by using our methodology, but due to the limited space they 
are not shown in this paper. Although the implementations considered in this paper are only 
for safe APNs, it is also possible to apply our method to general APNs and use up/down 
counters to represent places, instead of flip-flops. The results reported in this paper have 
already been applied to the control of an experimental manufacturing system. Our 
forthcoming publications will be about these results. 
 
REFERENCES 
 
1. V. Varshavsky & V. Marakhowsky, “Hardware Support for Discrete Event Coordination”, 

Proc. of Int. Workshop on Discrete Event Systems (WODES’96), Edinburg, UK, pp. 332-
340, IEE, August 1996. 

2. M. Uzam, Petri-Net-Based Supervisory Control of Discrete Event Systems and Their 
Ladder Logic Diagram Implementations. The University of Salford, UK, PhD. Thesis, 395 
pages, 1998. 

3. A.V. Yakovlev & A.B. Koelmans, “Petri Nets and Digital Hardware Design”, Lecture 
Notes in Computer Science, Lectures on Petri Nets II: Applications, Advances in Petri 
Nets, W. Reisig & G. Rozenberg (Eds.), Springer, pp. 154-236, 1998. 

4. L.A. Hollaar, “Direct Implementation of Asynchronous Control Circuits”, IEEE Trans. On 
Computers, C-31(12), pp. 1133-1141, 1982. 

5. V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Peschansky, R. Rosenblum, A. 
Taubin, & B. Tzirlin, “Self-Timed Control of Concurrent Processes”, Kluwer Academic 
Publishers, Dordretch, The Netherlands, 1990, V.I. Varshavsky, Ed.  

6. V. Varshavsky & V. Marakhowsky, “Asynchronous Control Device Design by Net Model 
Behaviour Simulation”, Lecture Notes in Computer Science, Vol. 1091: Proc. of the 17th 

Int. Conf. On Applications and Theory of Petri Nets, Osaka, pp. 497-515. Springer Verlag, 
1996. 


