. The International Worksho
on Discrete-Event System Design, DESDes’01,
June 2729, 2001; Przytok near Zielona Gora, Poland

MODELING AND VERIFICATION OF SEQUENTIAL
CONTROL PATHSUSING PETRI NETS

Werner ERHARD, Andreas REINSCH and Torsten SCHOBER

Friedrich-Schiller University Jena, Dept. of CS, Ernst-Abbe-Platz 1-4,
D-07740 Jena, Germany, <erhard, reinsch, schober>@informatik.uni-jena.de

Abstract. In this paper a design methodology based on interpreted Petri nets is applied to the
functional verification of complex sequential control paths. Starting from a Petri net model with
free choice structure and control engineering interpreted (CEI) net components, the verification of
structural and behavioural properties as well as functional simulation is performed. A series of
analysis strategies is derived to enable an automatic functional verification of a Petri net model.
From the results of functional verification a set of modeling guidelines could be provided.

Keywords. Petri net, digital design, functional verification, sequential control path.

1. PETRI NET BASED DIGITAL SYSTEM DESIGN

To model digital systems using Petri nets, one has to make two important choices concerning the net
specification and the net interpretation. The variety to model a system in a structural way is determined
by the net specification. By means of ordinary Place/Transition Petri nets it is simple to express both
sequential and concurrent events. In particular the structural sub class of Free-Choice Petri nets (FCPN)
that covers state machine and marked graphs provides clear structural modeling facilities. A compre-
hensive overview regarding net classes and its properties can be found in [7]. On the other hand the
chosen net specification should enable the application of analysis methods for structural and behavioural
net analysis. In this respect FCPN are particularly suitable too. Many results of Petri net theory can be
efficiently applied to analyze properties of FCPN.

1.1. Modeling digital systems using CEI Petri nets

Due to net interpretation, the components of a Petri net are assigned to components of a digital sys-
tem. Hence every net interpretation of a Petri net creates a Petri net model. There exist several net
interpretations in different technical domains that either map Petri net components to elementary digital
components or small sub nets to digital modules [8, 6, 1]. In [5] Control Engineering Interpreted (CEI)
Petri nets have been introduced. This net interpretation performs a direct mapping between a system of
communicating finite state machines and a hardware realization as shown in figure 1.

A CEI Petri net Ng;py is defined as a tuple Ngipn = (P, T, Fyre. Fpost, Mo, G, X, Y, Q1,Qp).
Every transition ¢; is assigned to an AND-gate and every place p; is assigned to a memory cell. Conse-
quently, a marked place p; = (e;, a;) symbolizes an active memory cell. Transition activating and place
marking are realized by two mappings @ and @,. So, in addition to the usual firing rule, transitions
are activated by guards G;. These guards arise from logically conjuncted input signals z; and express
signal processing in a digital system. Output signals a; can be used to enable state transition p; — p;

pre post
O
B} i f1
R 2 t e
x‘ ;G?’
3 " L
| | {G} n (P}
f State machine 1 L
| ! comb. P State
| | LOgiC 3 Mernory
L frost
post t n €n
f; £ fJP"eQ, ‘ ‘ l A e a a
G P {P places p=(e,a) x X x, t =
j =
! {T} transitions
{Fpre} pre arcs r’W)re
Q.=Ga={o3™ {FP% postarcs Y, o Y
iti {X} Y
— a Xt {G}_tranfmon guards {X} input signals Yy
Q= ai={¥} (Ie=i<=n) {Y} output signals

Figure 1. CEI Petri net and its hardware realization

or for output signal processing. In case of state transition, a; = 1 is conjuncted with G/ at an arbitrary
transition ¢;. Then p; gets low before p; gets high and hence a new state is activated. Concurrent be-
haviour is represented by different state memory modules, each of sequential behaviour, communicating
through shared transitions. The signal transition in a CEI Petri net shows that the token flow of the Petri
net equivalently represents the signal flow of the digital system.

This is one of the major objectives in the hardware design methodology proposed in [2]. By means
of CEI Petri nets with Free-Choice structure it is possible to model digital systems in a transparent
way, such that system behaviour is equivalently reproduced by a simple structured Petri net model.
Furthermore, behaviour and structure of the Petri net model is extensively analyzable if the Petri net
model is retransformed into a FCPN. Therefore all transition guards G; are eliminated.

To summarize at this point the approach of this work can be schematized as in figure 2. Starting
with net specification FCPN and net interpretation CEI Petri net the modeling process can be performed.
Afterwards the Petri net model is unannotated to a FCPN to enable net analyses. Results obtained by net
analysis should be interpreted for the Petri net model to conclude a statement concerning its functional
verification.

1.2. Petri net based design flow

Owing to high acceptance of commercial CAE-Systems and hardware description languages (HDL) it is
not preferable to create a design flow that solely is based on Petri nets. Therefore in the design flow two
entities enable a transformation between constructs of a HDL and Petri net components and vice versa.

Consequently, there are several opportunities to specify a digital system. On top of figure 3 HDL in-
put as well as graphical or textual Petri net input is proposed. For large designs high level Petri nets
(HLPN) such as hierarchical Petri nets or colored Petri nets can be incorporated if it is possible to unfold
the HLPN to a low level Petri net as FCPN. Once a Petri net model is created simulation and analysis
methods can be applied to verify the design functionally. At this point Petri nets have two great advan-

(FC PN) [System Modeling |

S|An:1l$= stsli%n’ Result Interpretation

Figure 2: Modeling and verification of digital systems using Petri nets

tages. First because of its graphical concepts rough design errors can be detected easily by functional
simulation. Beyond that an exhaustive analysis of structural and behavioural properties leads to a formal
design verification rather than simulation of test pattern. A functionally verified design is transformed
to dedicated HDL constructs to enable logic synthesis by means of conventional CAE tools. After logic
synthesis simulation and analysis methods can be applied again to simulate and verify the timing be-
haviour of the design. Now deterministic and stochastic timed Petri nets are applied.

Thus it is shown that the design flow is based on Petri nets but nevertheless is embedded in a conven-
tional design flow. To put the new design steps into practice the tool development environment “Petri
Net Kernel (PNK)” [4] and the “Integrated Net Analyzer (INA)” [9] are used.

| ' '

[HDL Input] [PN Input j
PN-Parser HL-Net
v
LL-Net
PN-Model
) $)
{ Y
[Behavioural Analysis} [Functional Simulation } [Structural Analysis}
: $
] I

Net Model Verification

i

[Net Model Optimization & Mapping

N

[HDL Description j

Timing Simulation
Performance Modeling [Logic Synthesis w
Performance Evaluation

Figure 3: Design flow for Petri net based digital system design

2. FUNCTIONAL VERIFICATION OF PETRI NET MODELS

For functional verification of a modeled digital system a set of properties are studied by means of Petri
net analysis. The analysis results are interpreted as properties of Petri net model. In a more practical way
it is necessary to propose some requirements and goals that must be obtained for functional verification.
Then a series of analysis strategies is derived to enable an automatic detection, localization and removal
of modeling errors. As an outcome of applied analysis strategies some modeling guidelines could be
derived. Adhering to these modeling guidelines enables approaching a functionally correct design al-
ready at early modeling cycles. In this work analysis strategies and modeling guidelines for functional
verification of sequential control paths are suggested.

2.1. Requirements and Goals

Requirements for functional verification are expressed as Petri net properties of the analyzed Petri net.
Net analysis is performed with the aid of tool INA as structural analysis and as reachability analysis.
At first Petri net analysis has to ensure boundness and especially 1-boundness. In the Petri net model
boundness determines that the modeled design has a finite state space. Control paths with an infinite
number of states are not close to reality. Moreover 1-boundness is claimed, since the digital system
should be modeled in a transparent way. If every place of th Petri net contains at most one token, logical
values “high” and “low” are distinguishable for the memory cells that are represented by places. An
unbounded Petri net is not analyzable any further. Liveness is the next necessary Petri net property for
functional verification and it is interpreted as the capability to perform a state transition in any case.
Every transition of the Petri net can be fired at any reachable marking. So if liveness is preserved the
Petri net and thus the Petri net model are not deadlocked. If in a live Petri net the initial state is reachable
then the Petri net is reversible. To reflect the structure of a sequential control path the Petri net should
have state machine structure. In this case not any transition of the Petri net is shared. Every transition
has exactly one predecessor place and one successor place. Therefore in a state machine generation and
consumption of tokens is avoided. Complex sequential control paths such as control path of a sequential
microprocessor consist of a system of strongly connected state machines. That includes decomposability
into small partial nets with state machine structure. When a Petri net is 1-bounded, live and it has
state machine structure then a very transparent Petri net model has been created. Every state in the
Petri net model can be assigned to a state of the control path. Thus the reachability tree is rather small
and represents exactly the number of control states. From the implementation point of view this state
encoding is called one hot encoding.

Places with more than one successor transition generate conflict situations. If several post-transitions
of a marked place are enabled and one transition fires, then all other transitions are disabled. Hence the
Petri net is not persistent and also it is not predictable what transition will fire. Transition guards are able
to solve conflicts because it represents an additional firing condition that is required to perform a state
transition. So transitions in conflict can get unique using transition guards and no behaviour ambiguity
remains. When a pre-place of a transition also appears as its post-place then there is a self loop in the
Petri net. Self loops can give a structural expression to model external signal processing distinctly. It
has to be clarified in the modeling process if any and which self loops are desired to emphasize external
signal processing. Thus self loops can be detected and assigned to that situations and others are marked
as modeling errors and should be removed.

2.2. Analysis Strategies

Table 1 summarizes all derived analyses strategies regarding detected modeling errors and affected Petri
net properties. An automatic verification of Petri net models using S1. .. .59 can be performed according
to figure 4. Using PNK and INA the analysis is efficiently implementable. It is supposed, that at “Start” a

reachability tree is derived or at least a part of it to determine boundness or unboundness of the analyzed
Petri net. Strategy S1 detects shared transitions with more than one post-place or transitions without
pre-place that cause unbounded places and hence an unbounded Petri net.

Strategy S1:

1. If Petri net NV is unbounded, then '
(a) Determine all shared transitions ¢;, | ¢;e |> 1 by means of ep;, Vp; € P = generate list {t}}.
(b) Determine transitions without a pre-place F't;0 by evaluating et;, Vi; € T

2. Check t; = ep;, Vp; € P:if t; € {t%.} V t; = Ft;0 = p; is unbounded. Pre-transition ¢; of place p;
produces tokens if ¢; € {t%} or ¢; = F't;0 and hence unboundness of p; is caused by ¢;.

S2 and S3 are applied to detect and localize dead transitions that caused by lack of strong connect-
edness or by shared transitions with more than one pre-place. It is possible that the analyzed Petri net
is 1-bounded and live but it shows no state machine structure. In this case all generated tokens are con-
sumed within a marked graph, that is a Petri net structure in which no place is shared. Strategy S4 is
applied to localize such shared transitions. By means of strategy S5...S7 dead transitions are detected
and localized caused by one sided nodes as mentioned in the table. In the last two analysis strategies
S8 and S9 transition guards are used to interpret conflicts and self loops within the Petri net model. A
detailed description of all analysis strategies and its application within a case study is given in [3].

C Start D)

! |

C B,S D C /B

) FtO /SM, SC

f (Legend
B Boundness
S 1-Boundness (Safety)
L Liveness
SM State Machine Structure
SsC Strongly Connectedness
Fto Transition Source
(FpO) @ (PFO) tFO Transition Sink
FpO Place Source

pFO Place Sink
my= 0 no initial marking
\Sl...sg Analysis Strategies

Figure 4: Application scheme of derived analysis strategies

According to the proposed analysis strategies it is possible to derive modeling guidelines that affect the
modeling process and assist the designer to create a system model reflecting the desired functionality.

Modeling Guidelines:

1. Avoidance of shared transitions.
2. Avoidance of one-sided nodes.
3. Ensuring strong connectedness.
4. Removal of conflicts using transition guards:
(&) All post-transitions of a shared place are provided with guards.
(b) Every post-transition of a shared place is provided with an unique guard.

| analysis strategy | modeling error

affected property

S1 generation of tokens or boundness
transition without pre-place
S2 not strongly connected liveness
S3 consumption of tokens state machine structure, liveness
S4 generation and consumption of tokens | state machine structure
S5 transition without post-place state machine structure, liveness
S6 place without pre-transition liveness
S7 place without post-transition liveness
S8 self loops pureness
S9 conflicts static & dynamic conflict free

Table 1: Summary of analysis strategies

3. CONCLUSIONS

This work introduces a Petri net based hardware design methodology for modeling and functional veri-
fication of digital systems. System modeling is performed by means of Free-Choice Petri nets (FCPN)
and control engineering interpreted (CEI) Petri nets. Using Petri net analysis techniques functional ver-
ification of Petri net models is obtained by analysis of Petri net properties and a suitable interpretation
concerning the Petri net model. It is shown that a Petri net based design flow can be embedded in a
conventional hardware design flow. For the functional verification of sequential control paths a series of
analysis strategies is provided. Using these analysis strategies it is possible to detect and localize model-
ing errors automatically. Finally a set of modeling guidelines is determined to avoid modeling errors at
early design cycles.

References

[1] J. Cortadella et. al. Hardware and Petri Nets: Application to Asynchronous Circuit Design. Proc. of the 215
ICATPN, LNCS 1825, Springer Verlag, 2000.

[2] W. Erhard, A. Reinsch und T. Schober. Petri-Netz-basierter Entwurf asynchroner rekonfigurierbarer Systeme.
Tagungsband 15. GI/ITG-Fachtagung - Architektur von Rechensystemen ARCS’99, 4.-7.10.1999, Jena.

[3] W. Erhard, A. Reinsch and T. Schober. Formale Verifikation sequentieller Kontrollpfade mit Petrinetzen.
Berichte zur Rechnerarchitektur, Band 7, Nr. 2, 2001.

[4] E. Kindler and M. Weber. The Petri Net Kernel: An Infrastructure for Building Petri Net Tools. Proc. of the
20" ICATPN, LNCS 1643, Springer \Verlag, 1999.

[5] R. Konigund L. Quéck. Petri-Netze in der Steuerungstechnik. Verlag Technik Berlin, 1988.
[6] D. Misunas. Petri-Nets and Speed-Independent Design. Communication of the ACM, 16(8):474-479, 1973.
[7] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4):541-580, 1989.

[8] S. Patil. Coordination of Asynchronous Events. ScD Thesis, Dept. of Elec. Eng., MIT, Cambridge, Mass., May
1970.

[9] P. H. Starke and S. Roch. Integrated Net Analyzer INA, Version 2.2. LS Automaten und Systemtheorie,
Institut flr Informatik, Humboldt Universitét zu Berlin, Dezember 2000.

