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Abstract. This paper addresses the use of hierarchical model structuring 
mechanisms for the design of embedded systems (in the sense of reactive real-time 
systems), using Reactive Petri nets. Relevant characteristics of Reactive Petri nets 
are briefly presented and their main roots are identified, namely Coloured Petri 
nets, Interpreted and Synchronised Petri nets.  
Two structuring techniques will be presented. The first one concerns with the 
integration of bus signals representation into non-autonomous Petri net models 
and the second one with a graphical structuring mechanism named by horizontal 
decomposition. This mechanism relies on the usage of macro-nodes, which have 
sub-nets associated with them. Three types of macro-nodes were used: macro-
place, macro-transition and macro-block. The execution of the model is 
accomplished through the execution of the flat representation of the model.  
At the end, a case study is presented around a controller of a 3-cell FIFO system. 
High-level and low-level Petri net models were used and compared for that 
purpose. The implementation of the referred controller was done using 
programmable logic devices, namely PALs and CPLDs. 
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1. INTRODUCTION 
It is widely acknowledged that the support for specific model structuring mechanisms is of the 
most importance for a complex system designer. In this sense, the use of techniques to build 
up compact models through the use of a “divide to conquer” strategy are commonly accepted 
as necessary. Common techniques use different levels of abstraction enabling the construction 
of the model in an incremental way. 

From the point of view of the hardware design, the concepts of modular modelling have been 
widely used for several decades. Also from the point of view of software design, the effects of 
structured programming, modular programming and of object-oriented programming have 
been supporting the reusability and robustness of code. Complementarily, the use of data 
structures could help towards compactness and expressiveness of the produced specification. 



These concepts and tendencies have been ported for the Petri net family of formalisms 
through a large number of proposals integrating hierarchies and modularity into Petri nets [4] 
[3] [1] [2]. Some of them support translation into simpler models (which means that they have 
the same modelling power), while other ones do not. 

From our point of view, the concepts proposed in [4] are of major importance, namely 
substitution transitions (probably the most used hierarchical structuring mechanism; it is also 
used in Coloured Petri nets [1] and in Design/CPN, the most used Petri net tool), and 
substitution places (this mechanism plays a dual role related with substitution transitions; the 
execution of the model is accomplished through the flat model obtained after the fusion of the 
two-levels of nets. It is important to stress that it is not allowed to directly connect a 
substitution place to a substitution transition; although already identified in [4], it was 
considered there not to be a serious restriction. We disagree with that assumption. 

This paper does not present, or use, some other important model-structuring mechanisms. 
Among them, one can mention the concept of depth, extensively used in Statecharts, and 
integrated in Reactive Petri net class [2] (which led to the concept of vertical decomposition 
structuring mechanism). 

2. ABOUT REACTIVE PETRI NETS 
This section briefly presents a non-autonomous high-level Petri net model, referred as 
Reactive Petri net model (RPN) [2]. In the following paragraphs, the model characteristics 
will be briefly presented in a non-formal way, around two components: the autonomous and 
the non-autonomous parts. In what concerns with the autonomous part of the model, Coloured 
Petri nets is the reference model [1]. The transition firing semantics is also similar. 

The non-autonomous part in its turn can be divided in two main parts: input-output modelling 
and other execution issues. In the second group, one can found priorities associated with 
transitions, automatic conflict resolution and time modelling. From the point of view of this 
paper, only the input modelling is relevant. Interpreted and synchronised Petri nets [5] 
constitute the references to the input and output modelling. In this sense, input is modelled 
through event conditions associated to transitions. Output actions can be associated to 
markings or to transition firings. 

The transitions firing rule was changed so as to consider the new input dependency. As such, 
for a transition to fire it must fulfil two conditions: it must be enabled, by the existence of a 
specific binding of tokens presented in the input places, and it must be ready, the external 
input evaluation must be true. Every transition enabled and ready will be fired. This means 
that the maximal step is always used. It is the followed approach in the synchronised Petri 
nets and interpreted Petri nets models. 

3. PROPOSED HIERARCHICAL STRUCTURING MECHANISMS 
Most of the known hierarchical structuring techniques emphasises the autonomous part of the 
model. Also, most of them use the flat model for the execution of the model; in this sense, the 
hierarchical structure is not reflected at the implementation level. This is also the case for the 
structuring mechanisms proposed in this paper. 

3.1. From signals to buses support 
Explicit modelling of interdependencies between the autonomous and non-autonomous parts 
of the model can be obtained in two situations: 



• case I):  binding variables can be used in event conditions;  
• case II):  input signals can be used in arc inscriptions, which implies that input signals 

can determine characteristics of coloured tokens. 

From the designer point of view, this characteristic could be of major interest in terms of the 
compactness of the produced model. It has to be stressed that it is possible to find a flat model 
that is behaviourally equivalent to the model with mutual-dependent attributes, as far as the 
cardinality of the variables involved in those cross-references is finite. This will also be 
shown in the following paragraphs. 

Case I situation is presented in Figure 1(a). There, a vector of input signals a[i] is associated 
with one transition. The specific binding of the tokens may select a specific input signal from 
the array. The flat model can be found replicating the transition as well as the arcs and 
inscriptions by a factor equal to the number of elements of the vector (two in the figure). The 
Figure 1(b) shows the flat model behaviourally equivalent to the model of Figure 1(a). 
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Figure 1 - Translation of specific inscriptions into flat models. 

Case II situation is presented in Figure 1(c), where an external event will impose part of its 
own characteristics into generated tokens coloured attributes. The example models the 
synchronisation between a local activity (represented by p1 marking) and an external activity 
that emits an event with some attached information (in the example, two possible values are 
considered). The Figure 1(d) shows the behaviourally equivalent flat model. It has to be 
stressed that one needs to know in advance the type and cardinality of the external 
information in order to be able to produce the behaviourally equivalent flat model. 

3.2. Horizontal decomposition 
The horizontal decomposition mechanism is defined in the “common” way used by top-down 
and bottom-up approaches, supporting refinements and abstractions, and is based on the 
concept of module. The module is modelled in a separated net, stored in a page; every page 
may be used several times in the same design. The pages with references to the modules are 
referred as super-page (upper-level pages), while the pages containing the module model are 
referred as sub-pages (lower-level pages). 

The execution of the model is accomplished through the flat model, which was the motivation 
for the naming of this decomposition type. This type of hierarchical decomposition only uses 
autonomous characteristics of the model. So, in this sub-section, non-autonomous 
characteristics, like signals, are irrelevant. 

The nodes of the net model related with hierarchical structuring are named by macro-nodes. 
Three types of macro-nodes are foreseen: macro-place, macro-transition (also used by 
Hierarchical Coloured Petri nets [1]) and macro-block. Every macro-node will have an 
associated sub-page that can be referred as a macro-net. Distinctive graphical notations are 
used for the representation of macro-nodes: macro-places are represented by a double circle 



(or ellipse), macro-transitions by a rectangle and macro-blocks are represented half-macro-
place and half-macro-transition. Due to space limitation, detailed examples are not presented, 
nor associated detailed semantics. 

A macro-place corresponds to a (macro-)node where all the arcs are connected to transitions, 
which means that the boundary of the macro-net (i.e. of the sub-page) is composed by a set of 
places. A macro-transition corresponds to a (macro-)node where all the arcs are connected to 
places. This means that the boundary of the sub-net should be composed by transitions; 
however, due to the necessary coloured binding evaluation for those transitions, the actual 
connections to input places and arc inscriptions are needed. So, in the sub-page associated 
with the macro-transition, references to places of the super-page have to be included. 
However, from the point of view of the execution of the model, the places connected to a 
macro-transition exist only at the super-page level; the places presented at the sub-page are 
void and will be merged with the associated places at the super-page.  

As far as one macro-transition can not be executed like an ordinary transition and also that a 
macro-place cannot be considered as an ordinary place (which means that it cannot hold a 
marking), they act just as a graphical modelling convenience enabling the designer to 
structure the graphical model in an expressive way. In this sense, it is interesting to consider 
the use of graphical modules that can have arcs to/from places and transitions at the same 
page. They correspond to modules in a more general way and we name them macro-blocks. 
As far as this representation is not an executable specification (at this level), the bipartite 
intrinsic characteristic of Petri nets is not violated. 

The following steps compose the merging process of the sub-page into the super-page: 
• References of places and transitions used by the sub-page will be eventually changed in 

order to produce unique labels; 
• One copy of the sub-page is inserted at the super-page; the macro-node reference is 

removed; 
• The arcs connected with a macro-place semantics are connected to the referred 

boundary place; for arcs connected with a macro-transition semantics, void boundary 
places of the sub-page are merged with the associated places at the super-page (arcs and 
associated arc inscriptions in the sub-page are kept). 

The interface of the macro-net (i.e. of the sub-page) is composed by a set of boundary places. 
As referred, this set of places will constitute the glued points between the sub-page and the 
super-page. However, when the sub-page boundary place is associated with a macro-place (or 
with a connection to a place in a macro-block), the boundary place is a common place (in the 
sense, that it can be marked, for instance). If the sub-page boundary place is associated with a 
macro-transition (or with a connection to a transition in a macro-block), the boundary place is 
a void place (in the sense, that it can not be marked, for instance). This characteristic allows 
the direct interconnection of macro-nodes, which can be of most interest in real-world 
applications, as we will try to emphasise in the following section. 

4. CASE STUDY 
An example illustrating the application of the proposed macro-nodes is presented. It is a 3-cell 
FIFO (first-in-first-out) system controller for assembly activities, referred in [2]. The 
assembly cell system has a conveyor to transport objects to the different cells. Each cell has 
presence sensors to detect objects on its in- and outputs, connected to the variables in[1..3] 
and out[1..3]. Each cell also has conveyor movement control, through the variables 
move[1..3].  



Figure 2 shows a simplified characterisation of the system controller, and two Reactive Petri 
net models as well. At the right hand side model, coloured characteristics support an easy 
modification of the model to accommodate a different number of cells. In the simplified 
model at the centre, a module-centric model based on the cell concept is presented; each cell 
is modelled by a macro-block. Associated detailed low-level model can be found in Figure 3. 
The usage of macro-blocks enables a more intuitive modelling and direct interpretation of the 
corresponding systems presented at the plant. 
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Figure 2 - N-cell FIFO system model. 

The final goal is to implement the referred controller through a programmable logic device 
(PALs or CPLDs). As far as it is not possible to use a systematic direct translation procedure 
from high-level nets to hardware implementation, several possibilities were analysed to 
accomplish the goal. 

Using the horizontal decomposition mechanism, it is possible to model the system in different 
ways, using high-level or low-level nets. Due to space limitations, it is not possible to present 
different examples. One is briefly presented considering the use of low-level Petri nets, where 
an equivalent model was obtained; it is presented at Figure 3. Three areas are identified 
associated with the different cells (which means to a different token in terms of the initial 
model). 

Although the example complexity is relatively low, and so no general conclusions could be 
taken, different possible solutions were implemented and tested using PLDs (simple PLDs 
like PALs and CPLDs 9536 and 95108 from Xilinx). Possible implementation strategies rely 
on the following attitudes: 
• Start with the coloured model and build up the associated space state, which is 

behaviourally equivalent to the original model; then implement the associated state 
machine in hardware using well-known techniques; 

• Unfold the coloured model into low-level nets (as the one presented in Figure 3), using 
automatic tools; with the low-level model, different approaches are possible: 
o direct implementation based on direct translation of each node into hardware structure 

(translating places by memory elements and transitions by combinatorial logic); 
o indirect implementation based on the associated state space; 
o partitioning of the model, based on the net characteristics, and parallel implementation 

of the several parts. 

Among the different solutions tested and associated with the last referred method, for instance 
the development of a hardware module associated with the macro-blocks presented in Figure 
2 (centre), one other was based on place invariant computation. In the referred example, based 



on the model of Figure 3, one can get four invariants with very interesting characteristics: i) 
the four place invariants cover all the places of the net, and ii) each invariant can be seen as a 
state machine (as far as only one and only one place of the invariant is marked at a time). In 
this sense, the implementation of the system can be based on the partitioning of the model 
into four concurrent state machines, which were trivially implemented in a PLD. 
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Figure 3 - Low-level representation of the 3-cell FIFO system. 

5. CONCLUSIONS 
In this paper, Petri net-based digital systems design was addressed. Two techniques were 
presented towards a better model structuring. Their usage was successfully validated through 
an example of a controller for a low-to-medium complexity system, which was implemented 
based on programmable logic devices (PALs and CPLDs). The first technique introduces the 
representation of arrays of signals into the Petri net model, while the second one uses the 
concept of module, which can be used associated with special kind of nodes, named by 
macro-nodes. Three kinds of macro-nodes were proved to be of interest. 
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