
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

A RIGOROUS DESIGN METHODOLOGY
FOR REPROGRAMMABLE LOGIC

CONTROLLERS

Marian ADAMSKI

Computer Engineering and Electronics Institute, Technical University of Zielona Góra,
ul. Podgórna 50, 65-246 Zielona Góra, POLAND, M.Adamski@iie.pz.zgora.pl

Abstract In the paper it is shown how to implement parallel (concurrent)
controllers in Field Programmable Logic (FPL). The main goal of the proposed
design methodology is to preserve the direct, self-evident correspondence among a
control interpreted Petri net and its possible hardware implementations. The
symbolic specification of Petri net is considered in terms of the local state changes,
which are distinguished by means of separated transitions, with their input and
output places. Decision Rules are given as a set of Gentzen logic sequents (formal
behavioural assertions). The initial specification, which is given in the form of
symbolic logic expressions, may be verified, and then transformed into an
intermediate format, which is accepted by industrial, VHDL- based, CAD tools.
The logic (Boolean) expressions, which are suitable for direct mapping into FPGA
or CPLD, can be also derived.

Keywords. Petri Nets, Logic Controllers, Hardware Description Languages, Field
Programmable Logic, Sequential Function Chart

1. INTRODUCTION
The well-structured formal specification, which is represented in the human-readable
language, has a direct impact on the validation, formal verification and implementation of
digital microsystems in Field Programmable Logic (FPL). The declarative, logic-based
specification of Petri net can increase the efficiency of the Concurrent (Parallel) Controller
design [1,4,8,14].

The model of concurrent state machine [4] is considered here inside the concept of sequent
automaton and parallel automaton developed by Zakrevskij [16]. In the presented view, a
control automaton, with distinguished, discrete and composite states, is also treated as a
dynamic inference system, based on Gentzen logic [1]. The symbolic sequents-axioms may
include some elements, taken from temporal logic [1,14]. The state space graph of controller
is considered as a description of a discrete transition system [10]. Statements about the
functionality of the designed system (behavioural axioms) are represented by means of
sequents-assertions, forming the rule-based decision system. Complex sequents are formally

transformed into the set of equivalent sequent-clauses (simple sequents in [16]), which are
very similar to the production rules [14].

At the beginning of design process, we use the control-oriented Petri net-based initial
specifications of dedicated, reactive discrete-event systems (or Sequential Function Chart [3]).
After analysis of some behavioural and structural properties of Petri net, a discrete-event
model is related with a knowledge-based, textual, descriptive form of representation. The
syntactic and semantic compatibility between Petri net descriptions and symbolic conditional
assertions are kept as close, as possible. The formally transformed decision rules are directly
mapped into VHDL statements. The Logic Controller is implemented in Field Programmable
Logic, as a FPGA based reprogrammable unit. The automatic synthesis with VHDL oriented
tools [2,3,10,15], as well as formal verification techniques and their efficiency
[6,7,11,13,14,16], are out of the scope of the paper. The paper presents only the outline of
formal methodology for Application Specific Logic Controllers (ASLC) design. The previous
work on that subject has been recently summarised in papers [2,3,4].

2. DISCRETE EVENT CONTROL SYSTEM
As an example we have selected the simplified version of Logic Controller behaviour taken
from papers [2, 3]. The chemical reactor V3 is fed with two kinds of liquids from measuring
vessels V1 and V2. After the reaction between the liquids is completed, the reactor V3 is
discharged. When the reactor V3 is empty, the process starts again from its initial state. To
ensure complete reaction stirrer M agitates the process liquid in the reactor. Figure 1 shows a
block diagram of the controlled system.

X0

V1

F1
Y1

V2

Y2
F2

X3
X4

X1
X2

Y3 Y4

V3

X5
X6

Y6

M
Y5

START Y0

Fig. 1. The controlled part of discrete systems

3. BASIC THEORETICAL MODEL
Designing the discrete controller as a digital system involves a Petri net-based behavioural
specification, taking into account the properties of the controlled objects (Figure 1). Control
Interpreted Petri Net [6] has been shown to be a powerful tool to specify and model the
behaviour of parallel (concurrent) controllers. The specification is given in terms of the local
state changes. An event driven system can be abstracted as a concurrent state machine (CSM),
in which several local states (represented as places in Petri net) may change, when event
occurs (transition in Petri net fires). The marking (distribution of tokens among places) of a
Petri net can be regarded as the current global state of the modelled system. From the present

global internal state (collection of simultaneously holding local states), the concurrent state
machine goes to the next distributed internal global state, to generate the necessary
combinational and registered output signals {y}. In such a way, an explicit local change of the
marking, during the occurrence of transition, corresponds to an implicit global state change.
The colours, which are attached to places [15], distinguish the intended sequential processes

The synchronous Petri nets [10,12] are introduced to model binary systems, which are
synchronised by a global clock. Input signals of controller are associated with transitions as a
Boolean guard. The most common static Moore type output signals are linked with places.
Some static Mealy type output signals are related both with places and input signals. A part of
Mealy type outputs frequently coincidence with the firing of transition. That makes it possible
to label net transitions with some particular dynamic signal names.

1

2

5

t4

t3t2

t1

t6

t8

x1

x0

x3

/x6

y1 y2

y3*y4

[1 2]

[1]

[1]

[1]

[2]

[2] 9

7

3

4

t7

[1] 68

y0

t5

/x5

x5*x6

/x2*/x4y5

[2]

[2]

y6

MP1

MP4MP3

MP2 MP5

MP6

MP0

MP7

Fig. 2. Modular behavioural specification by means of Petri nets

To obtain the economical implementation and easy maintenance, the Petri net may be directly
mapped into the Boolean equations without explicit enumeration of all possible global states
and all possible global state changes. Since the specification is given only in terms of the local
state changes (local transitions), the structured local state assignment (place encoding) is used
[1,16].

Petri nets provide a unified method for the design of discrete-event systems from a
hierarchical system description (Figure 2) to possibly hierarchical physical realizations. The
hierarchically structured Petri net consists of subnets, which, except possibly the Base Net are
well-formed blocks. The concurrency relation between subnets is depicted by means of
colours, which are attached to the explicitly to the places, and implicitly to the transitions and

arcs as well as to the tokens [15]. The set of subnets is partially ordered. The coloured
hierarchy relation tree (Figure 3) graphically represents the hierarchy and concurrency
relations among subnets. The Base Net MP0 is on the root of the tree. It contains the double-
macroplaces MP1-MP7, which stand for the hierarchically structured subnets at the lower
level of hierarchy. Each double macroplace (called shortly double) corresponds to a
compound operation, which is itself a discrete sub-process described by the doubled block.
The colours [1] and [2] are used for distinguishing some particular intended sequential
processes, and continuously controlling the place invariants (P-subnets) and hierarchy tree
during the composition or reduction of the net. The Petri net (Figure 3) is hierarchically
encoded by means of state variables Qi, i= 1,2,3,4. The symbols Qi or /Qi, attached to the
particular path, which is directed from the root to the leave, form the unique encoding term
for the considered macroplace or place.

[1]

[1 2]

MP0

P1 MP7

MP5 MP6

MP3 MP4MP1 MP2

P2 P3 P4 P5 P6 P8 P7 P9

[1 2]

[1 2][1 2]

[2] [1] [2]

/Q1 Q1

/Q2 Q2

/Q2/Q2 Q2Q2

/Q3 Q3 /Q4 Q4 /Q3 Q3 /Q4 Q4

Fig. 3. Hierarchy tree

4. GENTZEN SEQUENT LOGIC
Petri nets can be viewed as a formal model for logic rule-based specification (interpretation
structure). Transition rules are usually treated as production rules ('if-then' non-procedural
statements). The principal design language used to specify the Logic Controller behaviour in
extended nested If-Then-Else form in our design environment is Gentzen Sequent Logic [9].

While formulae may be regarded as a formal representation of compound propositions,
sequents in our approach represent asserted statements. Sequents may formally describe all
general forms of conditional assertions (rules). The Gentzen formal system naturally
simulates and records human-like reasoning. The synthesis, based on Gentzen calculus, is
treated as a formal symbolic transformation of the initial set of sequents (specification) into
another equivalent set of sequents (implementation) [1,2]. The rules of inference are directly
based on Gentzen Logic or they are previously proven, so the implementations are correct by
construction.

Complex sentences are built up from propositions by application of the propositional
connectives: not (/), and (*), or (+), if-then (->), if-and-only-if (<->) and if-then-else (-> |).
If F, G, and H are sentences then expression F->G|H (if F then G else H) is called
conditional. The implication F->G (if F then G) is a special case of the conditional. We call F

the antecedent and G the consequent of implication. In our particular application (rule-based
description) F is usually a conjunction of simple propositions, G and H are possibly nested
conditionals, or G and H are conjunctions of simple propositions. The most frequently used
form of simple decision rule is an asserted implication |- F->G, in which both F and G are
elementary conjunctions. According to Gentzen the simple decision rule can be represented
also as an equivalent sequent F|- G.

The complex conditional assertion (Complex Decision Rule) is described as a sequent:

|- F->G | H;
It encloses possibly nested components G and H. From the Gentzen logic point of view it is a
shorter form of a complex sequent |-(F->G)*(/F->H).
Each Gentzen inference figure (inference rule) applied to the sequents (transition rules)
preserves the meaning of the specification, but changes the number of the sequents and a
form, in which sequents are expressed. If a specification is correct, transformation by means
of natural inference guarantees correctness by construction.
As a simple example of formal transformation we consider the declarative assertion:

|- (F- >G)* (/F->H);
It can be transformed into an equivalent set of two simpler sequents (assertions) by splitting
the right side

|- (F- >G)* (/F->H);
_______________________ (Rule |- *)
|- (F->G); |- (/F->H);

The final assertions (simple Decision Rules) are as follows:

F |-G;
/F |-H;

5. PETRI NET SPECIFICATION IN SEQUENT LANGUAGE
The Logic Controller is considered as an abstract reasoning system (rule based system)
implemented in reconfigurable hardware. The mapping between inputs, outputs and local
internal states of the system is described in a formal manner by means of logic rules
(represented as sequents) with some temporal operators, especially with operator 'next' @
[1,11,14]. The correctness preserving synthesis, based on Gentzen calculus, is treated as a
formal transformation of the initial set of compound rules (Specification) into another set of
compound rules (Implementation).
As a basic form of Petri net specification in rule based format the transition-oriented
declarative specification is presented. It describes all possible active events in concurrent
state machine, when local states are changed, and the guard (Boolean label) associated to
transition is true.

T1: P1 * X0 |- @P2 *@P4;
T2: P2 * X1 |- @P3;
T3: P4 * X3 |- @P5;
T4: P3 * P5 |- @P6 * @P7;
T5: P6 * X5*X6 |- @P8;
T6: P7 * /X2*/X4 |- @P9;
T7: P8 * /X5 |- @P6;
T8: P6 *P9 * /X6 |- @P1;

The static (level) Moore type outputs depend directly on places:
P1 |- Y0; P2 |- Y1; P4 |- Y2; P7 |- Y3 * Y4;
P8 |- Y5; P9 |- Y6;

The total discrete state space (9 global states), which could be also possibly given in
hierarchical manner, should be always consistent with all local state changes:

|-P1*/P2*/P3*/P4*/P5*/P6*/P7*/P8*/P9, /P1*P2*/P3*P4*/P5*/P6*/P7*/P8*/P9,…,
 /P1*/P2*/P3*/P4*/P5*/P6*P7*P8*/P9, /P1*/P2*/P3*/P4*/P5*/P6*/P7*P8*P9

The presented form of description is very closed to well-known production rules, whose are a
principal forms of Petri net description in LOGICIAN [1], CONPAR [8,10], PARIS [12], and
PeNCAD [3,15,].

The dynamic (pulse or registered) output signal can be included directly to the decision rule,
when it changes its value together with the occurrence of transition. On the other hand, all
changes of the place making could be also explicitly included into the sequent, for example:

T1: P1 * X0 |- @P2 @P4*/@P1*@/Y0*@Y1*@Y2;

In some cases, like implementations with D flip-flops in FPGA, the declarative, place
oriented specification is taken into account:

P1: P1 |- X0 -> @P2 * P4 | @P1;
P2: P2 |- X1 -> @P3 | @P2;
P3: P3 |- P5 -> @P6 | @P3;
P4: P4 |- X3 -> @P5 | @P4;
P5: P5 |- P3 -> @P7 | @P5;
P6: P6 |- P9 * /X6 -> @P1 | (X5*X6 -> @P8 | @P6);
P7: P7 |- /X2*/X4 -> @P9 | @P7;
P8: P8 |- /X5 -> @P6 | @P8;
P9: P9 |- P6*/X6->@P1 | @P9;

In this kind of specification, if the next value of the temporal variable, for example @P1,
cannot be proved in the current marking (global state) as true, it is considered that it takes the
value false.
When control outputs are immediate (combinational), they may be associated with the
appropriate places and later transformed into registered ones. It should be noted that in many
cases registered outputs could be used not only as names of places, but also directly as codes
of the associated places

The sequents with transition symbols {T1, T2, … , T8}, after mapping the Petri net into VHDL
statements according to M. Bolton’s style, give economical implementations in FPGA [8]:

P1 * X0 |- T1
P2 * X1 |- T2
........
T1+P2*/T2 |- @P2

6. PETRI NET MODELLING AND SYNTHESIS WITH VHDL
The direct mapping of a Petri net into Field Programmable Logic (FPL) is based on a self-
evident correspondence between a place and a clearly defined bit-subset of a state register.
The places of the Petri net are assigned to the particular flip-flops in the Register Block.
VHDL supports conditional-statement constructs, which can be used to describe Petri net. The
proper local state assignment (encoding) makes it possible to map a given Interpreted Petri net
directly into FPGA or CPLD without its transformation into an equivalent global State
Machine. The simplest technique for Petri net place encoding is to use one-to-one mapping of
places onto flip-flops in the style of a one-hot state assignment. In that case, a name of the
place becomes also a name of the related flip-flop. The flip-flop is set into 1 if and only if the

particular place holds the token. Some of the recent developments involving modelling and
analysis such constructs in VHDL were reported, for example in [2,3,8,10,15].

In general, places after encoding are distinguished by conjunctions, which are formed from
state variables from the set {Q1, Q2, ... , Qk}. The local states, which are active
simultaneously, have non-orthogonal codes. They are represented by places holding the
tokens concurrently and belonging to the same vertex from the implicitly or explicitly given
reachability graph of Petri net. The local states, which belong to the different, but sometimes
overlapping sequential processes (P-invariants, SM-components) have orthogonal codes. One
particular method of place encoding is based on hierarchical decomposition of the net. The
example of an efficient heuristic hierarchical local state assignment [Q1, Q2, Q3, Q4] is as
follows:

P1 = 0 - - - P1 = /Q1
MP7 = 1 * * * MP7= Q1
MP5 = 1 0 * * MP5= Q1*/Q2
MP6 = 1 1 * * MP6= Q1*Q2
MP1 = 1 0 * * MP1= Q1*/Q2
MP2 = 1 0 * * MP2= Q1*/Q2
MP3 = 1 1 * * MP3= Q1*Q2
MP4 = 1 1 * * MP4= Q1*Q2

P2 = 1 0 0 * P2= Q1*/Q2*/Q3
P3 = 1 0 1 * P3= Q1*/Q2*Q3
P4 = 1 0 * 0 P4= Q1*/Q2*/Q4
P5 = 1 0 * 1 P5= Q1*/Q2*Q4
P6 = 1 1 0 * P6= Q1*Q2*/Q3
P7 = 1 1 * 0 P7= Q1*Q2*/Q4
P8 = 1 1 1 * P8= Q1*Q2*Q3
P9 = 1 1 * 1 P9= Q1*Q2*Q4

The global state encoding is correct if all vertices of the reachability graph have different
codes. The total code of the reachability graph vertex would be obtained by merging the codes
of the simultaneously marked places. The code of the particular place or macroplace is
represented by means of the vector composed from {0, 1, - , *}, or it is given as a related
Boolean term. The symbols 0, 1, - ('don't care') have the usual meanings, but the symbol * in
vector denotes 'explicitly don't know' (0 or 1, but not 'don't care'). For practical applications
(CAD tools) it is usually sufficient to manipulate with Boolean expressions (product terms)
[1,2,3,15].

7. CONCLUSIONS
Formal logic language, which is complementary with Petri nets, is suitable in specifying
system level designs of logic controllers, implemented in FPL. Simulating of Petri net model
and its hardware implementation can be simplified by translating of rule-based description to
VHDL. The simulation results, at circuit level and algorithmic level, can be compared
immediately. To simulate the pair consisting of the controller and discrete object under
control, the test bench must include, in addition to the Reprogrammable Controller
description, a second VHDL program, which model the controlled subsystem behaviour. The
next design step concentrates on the automatic synthesis of Reprogrammable logic
Controllers from their VHDL description. The paper presents the hierarchical Petri net
approach for synthesis, in which the modular net is mapped into the Field Programmable
logic as structured, but a flat netlist. The hierarchy levels are conserved and related with some
particular local state variable subsets, and clearly distinguished by the encoding vectors
(encoding terms). A concise, understandable specification can be easily locally modified. The

experimental Petri net to VHDL translator has been implemented on the top of standard
VHDL design tools, like ALDEC Active-HDL.

REFERENCES
[1] M. Adamski, “Parallel Controller Implementation using Standard PLD Software”. In:

FPGAs, W.R. Moore, W. Luk (Ed.), Abingdon EE&CS Books, Abingdon, England,
1991, Chapter 5.5, pp.296-304.

[2] M. Adamski M., J. L. Monteiro, “From Interpreted Petri Net Specification to
Reprogrammable Logic Controller Design”, Intern. Symposium on Industrial
Electronics ISIE’2000, 4-8 Dec. 2000, Puebla (Mexico), Vol. 1, pp.13-19.

[3] M. Adamski, “SFC, Petri Nets and Application Specific Logic Controllers”. Proc. of the
IEEE Int. Conf. on Systems, Man, and Cybern., San Diego, USA, 1998, pp.728-733.

[4] M. Adamski, A.D.Zakrevskij, “Rule-Based Specification of Reactive Logical Control
Devices”, Proceedings of the Polish-German Symposium on Science Research
Education, SRE’2000, Zielona Gora, 28-29.Sept.2000, Vol.1, pp. 199-204.

[5] K. Bilinski, M. Adamski, J.M. Saul, E. L. Dagless, “Petri net based algorithms for
parallel controller synthesis”, IEE Proceedings-E, Computers and Digital Techniques,
Vol. 141, No. 6, Nov. 1994, pp. 405-412.

[6] R. David, H. Alla, Petri Nets & Grafcet. Tools for modelling discrete event systems,
Prentice Hall, New York, 1992.

[7] W. Fengler, A. Wendt, M. Adamski, J.L. Monteiro, “Petri Net based Program Design
and Implementation for Controller Systems”, 1996 IFAC Triennial World Congress,
San Francisco, CA, USA, Vol. J, Identification II, Discrete Event Systems, pp.425-429.

[8] J. M. Fernandes, M. Adamski, A.J. Proença, “VHDL Generation from Hierarchical Petri
Net Specifications of Parallel Controllers”, IEE Proc.-E, Computer and Digital
Techniques, Vol.144, No.2, 1997, pp.127-137.

[9] M. E. Szabo (Ed.), The collected papers of Gerhard Gentzen, North Holland Publishing
Company, Amsterdam, 1969.

[10] A. Yakovlev, L. Gomes, L. Lavagno (Ed.), Hardware Design and Petri Nets, Kluwer
Academic Publishers, Boston, 2000.

[11] M. Heiner, “Petri Net Based System Analysis without State Explosion”, Proc. High
Performance Computing’98, Boston, April 1998, SCS Int., San Diego, 1988, pp.394-
403

[12] T. Kozlowski, E. L. Dagless, J.M. Saul, M. Adamski, J. Szajna “Parallel controller
synthesis using Petri nets”, IEE Proc.-E, Computers and Digital Techniques, Vol. 142,
No. 4, 1995, pp. 263-271.

[13] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proceedings of the
IEEE, Vol.77, No. 4, April 1989, pp. 541-580.

[14] J.S. Sagoo, D.J. Holding, “A comparison of temporal Petri net based techniques in the
specification and design of hard real-time systems”, Microprocessing and
Microprogramming, Vol. 32, No. 1-5, 1991, pp. 111 - 118.

[15] M. Wegrzyn, P. Wolanski, M. Adamski, J.L. Monteiro, “Field Programmable Device as
a Logic Controller”, Proc. of the 2nd Conf. on Automatic Control - Control’96, Oporto,
Portugal, 1996, Vol. 2, pp.715-720.

[16] A.D. Zakrevskij, “Parallel algorithms for logical control”. Inst. of Engineering Cybern.
of NAS of Belarus, Minsk, 1999 (book in Russian).

