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Abstract In the paper it is shown how to implement parallel (concurrent) 
controllers in Field Programmable Logic (FPL). The main goal of the proposed 
design methodology is to preserve the direct, self-evident correspondence among a 
control interpreted Petri net and its possible hardware implementations. The 
symbolic specification of Petri net is considered in terms of the local state changes, 
which are distinguished by means of separated transitions, with their input and 
output places. Decision Rules are given as a set of Gentzen logic sequents (formal 
behavioural assertions). The initial specification, which is given in the form of 
symbolic logic expressions, may be verified, and then transformed into an 
intermediate format, which is accepted by industrial, VHDL- based, CAD tools. 
The logic (Boolean) expressions, which are suitable for direct mapping into FPGA 
or CPLD, can be also derived. 
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1. INTRODUCTION 
The well-structured formal specification, which is represented in the human-readable 
language, has a direct impact on the validation, formal verification and implementation of 
digital microsystems in Field Programmable Logic (FPL). The declarative, logic-based 
specification of Petri net can increase the efficiency of the Concurrent (Parallel) Controller 
design [1,4,8,14].  

The model of concurrent state machine [4] is considered here inside the concept of sequent 
automaton and parallel automaton developed by Zakrevskij [16]. In the presented view, a 
control automaton, with distinguished, discrete and composite states, is also treated as a 
dynamic inference system, based on Gentzen logic [1]. The symbolic sequents-axioms may 
include some elements, taken from temporal logic [1,14]. The state space graph of controller 
is considered as a description of a discrete transition system [10]. Statements about the 
functionality of the designed system (behavioural axioms) are represented by means of 
sequents-assertions, forming the rule-based decision system. Complex sequents are formally 



transformed into the set of equivalent sequent-clauses (simple sequents in [16]), which are 
very similar to the production rules [14]. 

At the beginning of design process, we use the control-oriented Petri net-based initial 
specifications of dedicated, reactive discrete-event systems (or Sequential Function Chart [3]). 
After analysis of some behavioural and structural properties of Petri net, a discrete-event 
model is related with a knowledge-based, textual, descriptive form of representation. The 
syntactic and semantic compatibility between Petri net descriptions and symbolic conditional 
assertions are kept as close, as possible. The  formally transformed decision rules are directly 
mapped into VHDL statements. The Logic Controller is implemented in Field Programmable 
Logic, as a FPGA based reprogrammable unit. The automatic synthesis with VHDL oriented 
tools [2,3,10,15], as well as formal verification techniques and their efficiency 
[6,7,11,13,14,16], are out of the scope of the paper. The paper presents only the outline of 
formal methodology for Application Specific Logic Controllers (ASLC) design. The previous 
work on that subject has been recently summarised in papers [2,3,4].  

2. DISCRETE EVENT CONTROL SYSTEM 
As an example we have selected the simplified version of Logic Controller behaviour taken 
from papers [2, 3]. The chemical reactor V3 is fed with two kinds of liquids from measuring 
vessels V1 and V2. After the reaction between the liquids is completed, the reactor V3 is 
discharged. When the reactor V3 is empty, the process starts again from its initial state. To 
ensure complete reaction stirrer M agitates the process liquid in the reactor. Figure 1 shows a 
block diagram of the controlled system. 
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Fig. 1. The controlled part of discrete systems 

3. BASIC THEORETICAL MODEL 
Designing the discrete controller as a digital system involves a Petri net-based behavioural 
specification, taking into account the properties of the controlled objects (Figure 1). Control 
Interpreted Petri Net [6] has been shown to be a powerful tool to specify and model the 
behaviour of parallel (concurrent) controllers. The specification is given in terms of the local 
state changes. An event driven system can be abstracted as a concurrent state machine (CSM), 
in which several local  states (represented as places in Petri net) may change, when event 
occurs (transition in Petri net fires). The marking (distribution of tokens among places) of a 
Petri net can be regarded as the current global state of the modelled system. From the present 



global internal state (collection of simultaneously holding local states), the concurrent state 
machine goes to the next distributed internal global state, to generate the necessary 
combinational and registered output signals {y}. In such a way, an explicit local change of the 
marking, during the occurrence of transition, corresponds to an implicit global state change. 
The colours, which are attached to places [15], distinguish the intended sequential processes  

The synchronous Petri nets [10,12] are introduced to model binary systems, which are 
synchronised by a global clock. Input signals of controller are associated with transitions as a 
Boolean guard. The most common static Moore type output signals are linked with places. 
Some static Mealy type output signals are related both with places and input signals. A part of 
Mealy type outputs frequently coincidence with the firing of transition. That makes it possible 
to label net transitions with some particular dynamic signal names. 

1

2

5

t4

t3t2

t1

t6

t8

x1

x0

x3

/x6

y1 y2

y3*y4

[1 2]

[1]

[1]

[1]

[2]

[2] 9

7

3

4

t7

[1] 68

y0

t5

/x5

x5*x6

/x2*/x4y5

[2]

[2]

y6

MP1

MP4MP3

MP2 MP5

MP6

MP0

MP7

 
Fig. 2. Modular behavioural specification by means of Petri nets  

To obtain the economical implementation and easy maintenance, the Petri net may be directly 
mapped into the Boolean equations without explicit enumeration of all possible global states 
and all possible global state changes. Since the specification is given only in terms of the local 
state changes (local transitions), the structured local state assignment (place encoding) is used 
[1,16]. 

Petri nets provide a unified method for the design of discrete-event systems from a 
hierarchical system description (Figure 2) to possibly hierarchical physical realizations. The 
hierarchically structured Petri net consists of subnets, which, except possibly the Base Net are 
well-formed blocks. The concurrency relation between subnets is depicted by means of 
colours, which are attached to the explicitly to the places, and implicitly to the transitions and 



arcs as well as to the tokens [15]. The set of subnets is partially ordered. The coloured 
hierarchy relation tree (Figure 3) graphically represents the hierarchy and concurrency 
relations among subnets. The Base Net MP0 is on the root of the tree. It contains the double-
macroplaces MP1-MP7, which stand for the hierarchically structured subnets at the lower 
level of hierarchy. Each double macroplace (called shortly double) corresponds to a 
compound operation, which is itself a discrete sub-process described by the doubled block. 
The colours [1] and [2] are used for distinguishing some particular intended sequential 
processes, and continuously controlling the place invariants (P-subnets) and hierarchy tree 
during the composition or reduction of the net. The Petri net (Figure 3) is hierarchically 
encoded by means of state variables Qi, i= 1,2,3,4. The symbols Qi or /Qi, attached to the 
particular path, which is directed from the root to the leave, form the unique encoding term 
for the considered macroplace or place.  
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Fig. 3. Hierarchy tree 

4. GENTZEN SEQUENT LOGIC 
Petri nets can be viewed as a formal model for logic rule-based specification (interpretation 
structure). Transition rules are usually treated as production rules ('if-then' non-procedural 
statements). The principal design language used to specify the Logic Controller behaviour in 
extended nested If-Then-Else form in our design environment is Gentzen Sequent Logic [9]. 

While formulae may be regarded as a formal representation of compound propositions, 
sequents in our approach represent asserted statements. Sequents may formally describe all 
general forms of conditional assertions (rules). The Gentzen formal system naturally 
simulates and records human-like reasoning. The synthesis, based on Gentzen calculus, is 
treated as a formal symbolic transformation of the initial set of sequents (specification) into 
another equivalent set of sequents (implementation) [1,2]. The rules of inference are directly 
based on Gentzen Logic or they are previously proven, so the implementations are correct by 
construction. 

Complex sentences are built up from propositions by application of the propositional 
connectives: not (/), and (*), or (+), if-then (->), if-and-only-if  (<->) and if-then-else (-> |). 
If F, G, and H are sentences then expression F->G|H (if F then G else H) is called 
conditional. The implication F->G (if F then G) is a special case of the conditional. We call F 



the antecedent and G the consequent of implication. In our particular application (rule-based 
description) F is usually a conjunction of simple propositions, G and H are possibly nested 
conditionals, or G and H are conjunctions of simple propositions. The most frequently used 
form of simple decision rule is an asserted implication  |- F->G, in which both F and G are 
elementary conjunctions. According to Gentzen the simple decision rule can be represented 
also as an equivalent sequent    F|- G. 

The complex conditional assertion (Complex Decision Rule) is described as a sequent: 

|- F->G | H; 
It encloses possibly nested components G and H. From the Gentzen logic point of view it is a 
shorter form of a complex sequent |-(F->G)*(/F->H).  
Each Gentzen inference figure (inference rule) applied to the sequents (transition rules) 
preserves the meaning of the specification, but changes the number of the sequents and a 
form, in which sequents are expressed. If a specification is correct, transformation by means 
of natural inference guarantees correctness by construction. 
As a simple example of formal transformation we consider the declarative assertion:  

|- (F- >G)* (/F->H); 
It can be transformed into an equivalent set of two simpler sequents (assertions) by splitting 
the right side  

|- (F- >G)* (/F->H); 
_______________________     ( Rule |- *) 
|- (F->G);  |- (/F->H); 

The final assertions (simple Decision Rules) are as follows: 

F |-G; 
/F |-H; 

5. PETRI NET SPECIFICATION IN SEQUENT LANGUAGE 
The Logic Controller is considered as an abstract reasoning system (rule based system) 
implemented in reconfigurable hardware. The mapping between inputs, outputs and local 
internal states of the system is described in a formal manner by means of logic rules 
(represented as sequents) with some temporal operators, especially with operator 'next' @ 
[1,11,14]. The correctness preserving synthesis, based on Gentzen calculus, is treated as a 
formal transformation of the initial set of compound rules  (Specification) into another set of 
compound rules (Implementation). 
As a basic form of Petri net specification in rule based format the transition-oriented 
declarative specification is presented. It describes all possible active events in concurrent 
state machine, when local states are changed, and the guard (Boolean label) associated to 
transition is true. 

T1: P1 * X0 |- @P2 *@P4;
T2: P2 * X1 |- @P3;
T3: P4 * X3 |- @P5;
T4: P3 * P5 |- @P6 * @P7;
T5: P6 * X5*X6 |- @P8;
T6: P7 * /X2*/X4 |- @P9;
T7: P8 * /X5 |- @P6;
T8: P6 *P9 * /X6 |- @P1;



The static (level) Moore type outputs depend directly on places: 
P1 |- Y0; P2 |- Y1; P4 |- Y2; P7 |- Y3 * Y4;
P8 |- Y5; P9 |- Y6;

The total discrete state space (9 global states), which could be also possibly given in 
hierarchical manner, should be always consistent with all local state changes: 

|-P1*/P2*/P3*/P4*/P5*/P6*/P7*/P8*/P9,  /P1*P2*/P3*P4*/P5*/P6*/P7*/P8*/P9,…, 
 /P1*/P2*/P3*/P4*/P5*/P6*P7*P8*/P9,   /P1*/P2*/P3*/P4*/P5*/P6*/P7*P8*P9  

The presented form of description is very closed to well-known production rules, whose are a 
principal forms of Petri net description in LOGICIAN [1], CONPAR [8,10], PARIS [12], and 
PeNCAD [3,15,].  

The dynamic (pulse or registered) output signal can be included directly to the decision rule, 
when it changes its value together with the occurrence of transition. On the other hand, all 
changes of the place making could be also explicitly included into the sequent, for example: 

T1: P1 * X0 |- @P2 @P4*/@P1*@/Y0*@Y1*@Y2;

In some cases, like implementations with D flip-flops in FPGA, the declarative, place 
oriented specification is taken into account: 

P1: P1 |- X0 -> @P2 * P4 | @P1;
P2: P2 |- X1 -> @P3 | @P2;
P3: P3 |- P5 -> @P6 | @P3;
P4: P4 |- X3 -> @P5 | @P4;
P5: P5 |- P3 -> @P7 | @P5;
P6: P6 |- P9 * /X6 -> @P1 | (X5*X6 -> @P8 | @P6);
P7: P7 |- /X2*/X4 -> @P9 | @P7;
P8: P8 |- /X5 -> @P6 | @P8;
P9: P9 |- P6*/X6->@P1 | @P9;

In this kind of specification, if the next value of the temporal variable, for example @P1, 
cannot be proved in the current marking (global state) as true, it is considered that it takes the 
value false. 
When control outputs are immediate (combinational), they may be associated with the 
appropriate places and later transformed into registered ones. It should be noted that in many 
cases registered outputs could be used not only as names of places, but also directly as codes 
of the associated places  

The sequents with transition symbols {T1, T2, … , T8}, after mapping the Petri net into VHDL 
statements according to M. Bolton’s style, give economical implementations in FPGA [8]: 

P1 * X0 |- T1
P2 * X1 |- T2
........
T1+P2*/T2 |- @P2

6. PETRI NET MODELLING AND SYNTHESIS WITH VHDL 
The direct mapping of a Petri net into Field Programmable Logic (FPL) is based on a self-
evident correspondence between a place and a clearly defined bit-subset of a state register. 
The places of the Petri net are assigned to the particular flip-flops in the Register Block. 
VHDL supports conditional-statement constructs, which can be used to describe Petri net. The 
proper local state assignment (encoding) makes it possible to map a given Interpreted Petri net 
directly into FPGA or CPLD without its transformation into an equivalent global State 
Machine. The simplest technique for Petri net place encoding is to use one-to-one mapping of 
places onto flip-flops in the style of a one-hot state assignment. In that case, a name of the 
place becomes also a name of the related flip-flop. The flip-flop is set into 1 if and only if the 



particular place holds the token. Some of the recent developments involving modelling and 
analysis such constructs in VHDL were reported, for example in [2,3,8,10,15]. 

In general, places after encoding are distinguished by conjunctions, which are formed from 
state variables from the set {Q1, Q2, ... , Qk}. The local states, which are active 
simultaneously, have non-orthogonal codes. They are represented by places holding the 
tokens concurrently and belonging to the same vertex from the implicitly or explicitly given 
reachability graph of Petri net. The local states, which belong to the different, but sometimes 
overlapping sequential processes (P-invariants, SM-components) have orthogonal codes. One 
particular method of place encoding is based on hierarchical decomposition of the net. The 
example of an efficient heuristic hierarchical local state assignment [Q1, Q2, Q3, Q4] is as 
follows: 

P1 = 0 - - - P1 = /Q1
MP7 = 1 * * * MP7= Q1
MP5 = 1 0 * * MP5= Q1*/Q2
MP6 = 1 1 * * MP6= Q1*Q2
MP1 = 1 0 * * MP1= Q1*/Q2
MP2 = 1 0 * * MP2= Q1*/Q2
MP3 = 1 1 * * MP3= Q1*Q2
MP4 = 1 1 * * MP4= Q1*Q2

P2 = 1 0 0 * P2= Q1*/Q2*/Q3
P3 = 1 0 1 * P3= Q1*/Q2*Q3
P4 = 1 0 * 0 P4= Q1*/Q2*/Q4
P5 = 1 0 * 1 P5= Q1*/Q2*Q4
P6 = 1 1 0 * P6= Q1*Q2*/Q3
P7 = 1 1 * 0 P7= Q1*Q2*/Q4
P8 = 1 1 1 * P8= Q1*Q2*Q3
P9 = 1 1 * 1 P9= Q1*Q2*Q4

The global state encoding is correct if all vertices of the reachability graph have different 
codes. The total code of the reachability graph vertex would be obtained by merging the codes 
of the simultaneously marked places. The code of the particular place or macroplace is 
represented by means of the vector composed from {0, 1, - , *}, or it is given as a related 
Boolean term. The symbols 0, 1, - ('don't care') have the usual meanings, but the symbol  * in 
vector denotes  'explicitly don't know' (0 or 1, but not 'don't care'). For practical applications 
(CAD tools) it is usually sufficient to manipulate with Boolean expressions (product terms) 
[1,2,3,15].  

7. CONCLUSIONS 
Formal logic language, which is complementary with Petri nets, is suitable in specifying 
system level designs of logic controllers, implemented in FPL. Simulating of Petri net model 
and its hardware implementation can be simplified by translating of rule-based description to 
VHDL. The simulation results, at circuit level and algorithmic level, can be compared 
immediately. To simulate the pair consisting of the controller and discrete object under 
control, the test bench must include, in addition to the Reprogrammable Controller 
description, a second VHDL program, which model the controlled subsystem behaviour. The 
next design step concentrates on the automatic synthesis of Reprogrammable logic 
Controllers from their VHDL description. The paper presents the hierarchical Petri net 
approach for synthesis, in which the modular net is mapped into the Field Programmable 
logic as structured, but a flat netlist. The hierarchy levels are conserved and related with some 
particular local state variable subsets, and clearly distinguished by the encoding vectors 
(encoding terms). A concise, understandable specification can be easily locally modified. The 



experimental Petri net to VHDL translator has been implemented on the top of standard 
VHDL design tools, like ALDEC Active-HDL. 
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