
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Góra, Poland

STATE SPACE CALCULATION
ALGORITHM OF HIERARCHICAL PETRI

NETS WITH APPLICATION OF
DECISION DIAGRAMS

Piotr MICZULSKI

Computer Engineering and Electronics Institute, Technical University of Zielona Góra,
ul. Podgórna 50, 65-246 Zielona Góra, POLAND, P.Miczulski@iie.pz.zgora.pl

Abstract. The state space of a hierarchical Petri net can be presented as a
hierarchical reachability graph. However hierarchical reachability graph can be
described with the help of logic functions. From the opposite direction, binary
decision diagrams (BDD) are efficient data structures for representing logic
functions. Because of the exponential growth of the number of states in Petri nets,
it is difficult to process the whole state space. Therefore the abstraction method of
the selected macromodules (macroplaces and macrotransitions) gives the
possibility of analysis and synthesis for more complex systems. The goal of the
paper is to show the representing method of the state space in the form of
connected system of binary decision diagrams as well as its calculation algorithm.

Key Words. Hierarchical Petri nets, Binary Decision Diagrams, Hierarchical
reachability graph

1. INTRODUCTION
Hierarchical interpreted Petri nets are a structural method of describing concurrent processes
[6]. They enable to design more complex systems through abstracting some parts of the net, at
the moment. It is possible when the abstract part of net is formally correct i.e. it is safe, living
and persistent [4].

One of possibilities of representing digital circuit state space is hierarchical reachability graph
[5]. It describes the state space at various hierarchy levels. Hierarchical reachability graph can
be represented in the form of a logic function, where the logic variables correspond to places
of Petri net. The number of variables equals to the number of places. However the efficient
ways of representing logic functions are decision diagrams, e.g. Binary Decision Diagrams
(BDD) or Zero-suppressed Binary Decision Diagrams (ZBDD).

In this paper, the calculation’s method of hierarchical state space with the help of operations
on logic functions and decision diagrams is presented. The symbolic traversal method of
space state, for “flat” Petri nets, was presented in [1], and the application of this method for

hierarchical Petri nets as well as the description’s method of hierarchical reachability graph
with the form of system of connected decision diagrams are the new ideas.

2. HIERARCHICAL PETRI NETS
A hierarchical Petri net is a directed graph, which has three types of nodes called: places
(represented by circles), transitions (represented by bars or boxes) and macroplaces
(represented by double circles). The macroplaces include another places, transitions and also
macroplaces and they signify lower levels of hierarchy (fig. 1). When a hierarchical Petri net
is used to model a parallel controller, each place and macroplace represents a local state of the
digital circuit. Every marked place or macroplace represents an active local state, and the set
of places, which are marked at the same time, represents the global state of the controller.
However the transitions describe the events, which occur in the controller. The controller also
can receive signals (inputs) coming from a data path as well as from another control unit. It
produces, using this information, control signals, which determine the behavior of the system.
Input signals can be assigned to transitions in the form of logic function. This function is
called a transition predicate. If the predicate is satisfying and all input places of the transition
have markers, the transition will fire.

The figure below presents the example of hierarchical Petri net, which consists of some levels
of hierarchy.

p1

p3

SGt1

KOB
t2

p2 OB

S1 t3

K1 t4

p4

p5

O1
!S1

t5

p6

S2 t6

K2
t7

p7

p8

O2
!S2

t8

p9

S3 t9

K3
t10

p10

p11

O3
!S3

t11

t12

M
3

M
4

M
1

M
2

M
2,

3,
4

Fig. 1. The example of hierarchical Petri Net

The top hierarchy level is composed of macroplaces 1M and 4,3,2M . The state space of it can

be described in the form of the logic function: () 4,3,214,3,214,3,21 , MMMMMM +=χ .

The lower level of abstraction is composed of three parallel macroplaces 2M , 3M and 4M
which are parts of macroplace 4,3,2M . However the macroplaces 1M , 2M , 3M and 4M form
the lowest level of hierarchy. Similarly to the top level of hierarchy, every remaining
abstraction level can be described with the help of logic function.

First thing which the designer has to do (after the controller was modeled with the help of
Petri net) is to create graphical or textual description of Petri net. With this end in view he can
use, for example the textual format of hierarchical Petri net specification (PNSF2) [6]. Next,
the computer program loads this specification to internal data structures. The hierarchical or
“flat” Petri net is stored in object data structures (fig. 2).

CObject

CPetriNet CBasicPetriNetObject

CModule

CPTObject

CPlaceCTransition

CMacroPlaceCMacroTransit ion

CArc

CCommonArc CInhibitorArc CEnablingArc CIdent ifier

CInput COutput

CPetriNetObject

CPredicate

CMacroModule

Fig. 2. The object data structure for representing of hierarchical Petri nets in computer memory

In the next step we can calculate the state space of digital controller using internal data
structure and the logic operations which are performing using decision diagrams.

3. THE STATE SPACE AND BINARY DECISION DIAGRAM
A binary decision diagram is a rooted, directed, acyclic graph, which has two sink nodes
labeled 0 and 1, representing Boolean function 0 and 1, and non-sink nodes, each labeled with
a Boolean variable. Each non-sink node has two output edges labelled 0 and 1 and represents
the Boolean function corresponding to its 0 edge or the Boolean function corresponding to its
1 edge. The construction of a BDD for the function is based on its Shannon expansion [2, 3].

An ordered binary decision diagram (OBDD) is a BDD in which all the variables are ordered
and every path from the root node to a sink node visits the variables in the same order. A
reduced ordered binary decision diagram (ROBDD) is an OBDD in which each node
represents a distinct logic function. The size of a ROBDD strictly depends on variable
ordering. Many heuristics have been developed to optimize the size of BDDs [2, 3]. In this
paper all consideration binary decision diagrams are reduced and ordered.

The whole state space of the presented hierarchical Petri net (fig. 1) can be described as logic
function:

11109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

111098765432111109876543211110987654321

1110987654321111098765432111109876543210

pppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppM

+
+++
+++
+++
+++
+++
+++
+++
+++

+++=χ

This means, that modeled controller may be in one of the twenty-nine states. The BBD
diagram, for this function, has 24 non-sink nodes. We can reduce the number of nodes by
creating connected system of binary decision diagrams. In this case, we are giving the six
decision diagrams, which have nineteen non-sink nodes. This situation follows from that the
size of decision diagram depends, among other things, on the number of logic variables of the
function.

4. CALCULATION ALGORITHM OF STATE SPACE
In this chapter there is the description of state space calculation algorithm (fig 3). After
parsing a description of Petri net, written in PNSF2 format and loading Petri net to internal
data structures, the algorithm checks a structure of Petri net. If it is a “flat” Petri net, the
algorithm splits it into hierarchical structure of macroplaces. In the next step, for each
macroplace, the algorithm (recursively) calculates characteristic functions. This function,
represented in the form of decision diagram, describes state space of each macroplace.
However the calculated decision diagram is joined to the connected system of decision
diagrams, which represent the whole state space of hierarchical Petri net.

One of more important steps of this algorithm is calculating characteristic function, describing
the state space of the macroplace (fig 4). The symbolic traversal algorithm was gathered from
[1]. In this method, next marking is calculated using their characteristic function and
transition function. The transition functions (Ω→Ω∆ :) are logic functions associated with
places and defined as a functional vector of Boolean functions:

() () ()[]XPXPXP n ,,...,,,, 21 δδδ=∆ ,

where ()XPi ,δ is a transition function of place ip ; P and X are sets of places and input
signals respectively. The function iδ has value 1 when place ip will have a token in the next
iteration, otherwise it equals 0. Every function iδ consists of two parts:

• a part describing the situation when the place ip will receive a token,
• a part describing the situation when the place will keep a token.

For example: place 7p (fig. 1) will have a token in the next iteration, if place 6p have token
and input signal 2S is active (transition 6t will fire) or place 7p has already got a token and

either input signal 2K is inactivate (transition 7t is disabled), thus the function 7δ can be
defined as follows:

27267 KpSp ∗+∗=δ .

 START

Reading hierarchical Petri net (HPN)
from PNSF2 to internal data structures

STOP

Parsing PNSF2 file, describing structure of
hierarchical Petri net (HPN)

Yes

No

Splitting “flat” Petri net into hierarchical structure
of macroplaces

All level of
hierarchy has

been processed?

Is it hierarchical
Petri net?

No

Generating characteristic function describing state
space of this macroplace, with the help of BDDs

Getting the next macroplace
in hierarchical Petri net

Adding the BDD, representing the state space of
current macroplace, to connected system of BDDs

Yes

Fig. 3. Calculation algorithm of state space of hierarchical Petri net

The computation operation of a set of marking which can be reached from the current
marking (current_marking) in one iteration according to the following equations:

[∏
=

′∗∃∃=
n

i
ixp

pmarkingcurrentmarkingnext
1

(� ()()])xpmarkingcurrent i ,_ δ∗

where xpp ,, ′ denote the present state, the next state and the input signal;
p
∃ and

x
∃ represent

existential quantification of the present state and the input signal variables; symbol � and *
represents logic operators XNOR and AND respectively.

START

current_marking != 0

Calculating initial marking (initial_marking)
for the current macroplace of analysing HPN

Putting initial marking to current marking:
current_marking := initial_marking;

Yes

Generating a new marking
(new_marking)

Setting the current marking to the new marking
current_marking := new_marking;

Adding current marking (current_marking) to
the state space of the macroplace

No

STOP
Fig. 4. Symbolic traversal algorithm for hierarchical Petri net

5. SUBMISSION
The application of connected system binary decision diagrams enables to reduce the number
of nodes of decision diagrams. From the opposite the application hierarchical Petri nets makes
easier designing parallel digital controller easier. It means, that we can process digital circuits,
described by hierarchical Petri nets, on various abstraction’s levels unnecessarily processing
the whole state space. The next step will be working out the rules and the algorithm of
transforming a flat Petri net into a hierarchical one.

The paper was prepared under the guidance of Professor M. Adamski.

REFERENCES
[1] K. Biliński, “Application of Petri Nets in parallel controller design”, PhD. Thesis,

University of Bristol, Electrical and Electronic Department, 1996
[2] R. Drechsler, “Binary Decision Diagram. Theory and Implementation”, Kluwer Academic

Publishers, 1998
[3] S. Minato, “Binary Decision Diagrams and Applications for VLSI CAD”, Kluwer

Academic Publishers, 1996
[4] T. Murata, “Petri Nets: Properties, Analysis and Applications”. Proceedings of the IEEE,

77(4) ss. 541 – 580, 1989
[5] M. Notomi, T. Murata, “Hierarchical Reachability Graph of Bounded Petri Nets for

Concurrent-Software Analysis”. Proceedings of IEEE Transactions on Software
Engineering, Vol. 20, No 5, 1994

[6] M. Węgrzyn.: “Hierarchical implementation of concurrent digital controllers with
application FPGA”. PhD. Thesis, Warszawa 1998

