
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

TIMED PETRI NETS FOR SOFTWARE
APPLICATIONS

Grzegorz ANDRZEJEWSKI

Computer Engineering and Electronics Institute, Technical University of Zielona Góra,
ul. Podgórna 50, 65-246 Zielona Góra, POLAND, g.andrzejewski@iie.pz.zgora.pl

Abstract. This paper presents a model of interpreted timed Petri nets in an abstract
program environment called Virtual Decision System (VDS). There are described
possibilities of software implementation with technical limitations of mentioned
method. It shows a practical example with elements of deviation analysis.
Possibilities of interpretation of dynamic parameters with special taking automatic
decomposition algorithm into Hardware/Software Co-Design systems are
described.

Key Words. Timed Petri Nets, Digital Microsystems, Software Applications

1. INTRODUCTION
There exist a lot of ways for formal specification of digital control systems. The most of all
(at present) are various modifications of Finite State Machine (e.g. CFSM, HCFSM), flow
graphs (e.g. DFG, CDFG), hardware description languages (e.g. VHDL, Verilog) and Petri
nets [7]. The latter have a special importance in designing process for the sake of rich formal
verification apparatus and naturalness of concurrency aiding [5].
In designing process of control system very often a situation occurs in which specific after-
effects of processes are strongly dependent on time. There is a simple example showing this
problem on a simplified control system of initial washing in automatic washer (Fig.1).

V1

H

L1

L2

V2

T

RL

WASHING
CYLINDER

Fig. 1.An example of automatic washer control system

After turning on washing program valve V1 is opened and water is infused. Infusing process
lasts to moment achieving of L1 level. In the same time after exceeding L2 level (total sinking
of heater H) if the temperature is below required (TL1) heater system is turned on. After valve

V1 closing and water heating to temperature TL2 washing process is started in which the
washing cylinder is turned alternate left and right for 10 sec. with 5 sec. break between.
Keeping of temperature process is active for whole the washing cycle. The cycle is turned off
after 280 sec. and cylinder is stopped, the heater is turned-off and the valve V2 is opened for
water removing.
So, this problem is possible to describe by a hardware description language using wait and
after instructions. But synthesis of them can give a lot of problems because these language
constructions are not supported by synthesis tools. The other formal specification models
(except Petri nets) don’t allow a timing dependence in general.
In this article a new model of interpreted timed Petri nets for software applications is
proposed, with its synthesis method. The method allows easy and cheap a practical
implementation for shown dynamic system.

2. VIRTUAL DECISION SYSTEM
Program implementation of Petri net is possible in various ways. One is defining an abstract
program environment making possible efficient implementation of control systems.
The proposed program environment is defined in terms of net places, names of input/output
signals and program decision system called the Virtual Decision System VDS (Fig.2).

Input
Block

External
Input

Signals

External
Output
Signals

Output
Block

Virtual Decision System

S

I
Decision

Block

C

O

Fig. 2. Virtual Decision System

Where S – is a block storing information about system state, C – is a specification block, I – is
a block storing the names of active input signals: I = {x∈X : x = 1}, O – is a block storing the
names of active output signals: O = {y∈Y : y = 1}. It was broadly described in [8].

3. PROGRAM INTERPRETED PETRI NET
In [4] were introduced definitions describing program Petri net with most important kind of
its: interpreted net, net with enabling and prohibit arcs. There is given a definition of program
interpreted Petri net as a basis for further theoretical studies.
Program interpreted Petri net is a 5-tuple:

IPPN = (P, C, S0, X, Y) (1)

where: P is a non-empty set of names of net places, S0 – is an initial net state, X is an input
alphabet, Y is an output alphabet and C – is a specification structure composed of tables C1
and C2, such that: C1 has n×3 size (n describes a number of decision rules) and C1

i1 i C1
i2

fields include sets of names of net places, which are correspondingly the conditions and the
results of decision rule, C1

i3 field includes conditions in logical formulas form b(X) described
on input alphabet; C2 has m×1 size (m = ||P||) and each of fields includes set of names of
output signals assigned to given place.
The conditions of rule i enabling:

∀p∈C1
i1 : p∈S (2-a)

b∈C1
i3 ⇒ b(X)=1 (2-b)

The actions associated with rule i firing:
∀p∈C1

i1 : S = S - p (3-a)
∀p∈C1

i2 : S = S + p (3-b)
∀(p∈C1

i1)∀(y∈C2
p) : O = O - y (3-c)

∀(p∈C1
i2)∀(y∈C2

p) : O = O + y (3-d)

That means that from block S the names of places belonging to C1
i1 are removed and

belonging to C1
i2 are inserted. As well as from block O the names of output signals included

in C2 table’s fields corresponding with places belonging to C1
i1 are removed and the names of

output signals included in C2 table’s fields corresponding with places belonging to C1
i2 are

inserted.

4. TIMED PETRI NETS
Timed Petri nets were introduced earlier in literature [1,6]. And yet the subject matter wasn’t
developed for the sake of implementation difficulties mainly. A new program model of timed
Petri net is proposed in this paper, that allows an efficient implementation in microprocessor
modules.
A general program model of interpreted timed Petri net is shown as an ordered 6-tuple:

TIPPN = (P, C, S0, X, Y, T) (4)

where: P, S0, X, Y are defined just like (1), C is a specification block defined according to a
kind of described net, and T is discrete scale of time. The differences will be stressed also in
conditions of rules enabling and actions connected with their firing.
There is modified block S, keeping information about system state. For timed nets it can be a
structure composed of following elements:
S1 = {p: p∈P} – includes names of places currently marked, being outside a keeping state,
S1

2 = {p: p∈P} – includes names of places currently marked, being inside a keeping state,
S2

2 = {t: t∈T} – includes numbers assigned to discrete scale of time and describing state of
timing actions in accordance with the places in S1

2,
S1

3 = {p: p∈P} – includes names of places prepared for marking after closing adequate timing
actions assigned to given rules firing,
S2

3 = {t: t∈T} – includes numbers assigned to discrete scale of time and describing state of
timing actions in accordance with the places in S1

3.

4.1. Program timed net of P-type
The time parameters are assigned to places in the nets of P-type and they are called keeping
times. The keeping times can be perceived as times of staying marker in place p what is
shown in Fig.3-a) (along with practical interpretation).
The condition of transition T2 enabling is a time (2 sec.) passing since moment of introducing
marker into place P1. In practice this situation is interpreted as starting external timing action
by signal c1. The end of action is indicated by set signal c2 conditioning transition T2.
A theoretical model is consistent with (4). Specification block C has differences to (1):
table C2 has m×2 size, into C2

1(p) are included names of output signals assigned to place p,
and into C2

2(p) are included numbers assigned to discrete scale of time T, describing the
keeping time of marker in place p.
The condition of rule i enabling (just like 2-b) and:

∀p∈Ci1
1 : p∈S1 (5)

The actions associated with rule i firing:

∀p∈C1
i1 : S1 = S1 - p (6-a)

∀p∈C1
i2 : C2

2(p) = 0 ⇒ S1 = S1 + p (6-b)
∀p∈C1

i2 : C2
2(p) ≠ 0 ⇒ S1

2 = S1
2 + p i S2

2 = S2
2 + C2

2(p) (6-c)

That means that from block S1 the names of places belonging to C1
i1 are removed and

belonging to C1
i2 are inserted to S1 if their keeping time equals zero (C2

2(p) = 0), or to S1
2 if

not. Simultaneously a variable of timing action is added to S2
2 (with initialization by C2

2(p)
value).

P1

<2s>

T1

T2

P1

<2s> c1

T2c2

P2 P2

P1 P1

Pt

<2s>

<2s>
T1

T1

Tt

 a) b)

Fig. 3.An example of a) P-type net, b) T-type net

4.2. Program timed net of T-type
The time parameters are assigned to transitions in the nets of T-type and they are called
execution times. The execution times can be perceived as times since moment of removing
markers from input places to moment of inserting marker to output places given transition t.
The situation can be interpreted with ideas P-type net introduced in 4.1. During transition T1
execution (Fig.3-b)) marker is moved to auxiliary place Pt. End of this execution (equivalent
to keeping time of place Pt) allows auxiliary transition Tt execution. In consequence the
marker is moved to output place P2.
A theoretical model is consistent with (4). Specification block C has differences to (1):
table C1 has n×4 size, fields C1

i1, C1
i2, and C1

i3 just like (1), and into C1
i4 are included

numbers assigned to discrete scale of time T, describing execution time of transition t.
The condition of rule i enabling just like (5). The actions associated with rule i firing just like
(6-a) and:

C1
i4 = 0 ⇒ ∀p∈C1

i2 : S1 = S1 + p (7-a)
C1

i4 ≠ 0 ⇒ ∀p∈C1
i2 : S1

3 = S1
3 + p i S2

3 = S2
3 + C1

i4 (7-b)

That means that from block S1 the names of places belonging to C1
i1 are removed and

belonging to C1
i2 are inserted to S1 if execution time of rule equals zero (C1

i4 = 0), or to S1
3 if

not. Simultaneously a variable of timing action is added to S2
3 (with initialization by C1

i4
value).

4.3. Program timed net of PT-type
Timed Petri net PT-type is a superposition of nets defined in 4.1 and 4.2. There are the time
parameters assigned with both places and transitions. A theoretical model is consistent with
(4). Specification block C is composed of two tables: C1 (just like in 4.2) and C2 (just like in
4.1).
The condition of rule i enabling just like (5). The actions associated with rule i firing just like
(6-a) and:

C1
i4 ≠ 0 ⇒ ∀p∈C1

i2 : S1
2 = S1

2 + p i S2
2 = S2

2 + C1
i4 (8-a)

C1
i4 = 0 ⇒ ∀p∈C1

i2 : C2
2(p) = 0 ⇒ S1 = S1 + p (8-b)

C1
i4 = 0 ⇒ ∀p∈C1

i2 : C2
2(p) ≠ 0 ⇒ S1

3 = S1
3 + p i S2

3 = S2
3 + C2

2(p) (8-c)

That means that from block S1 the names of places belonging to C1
i1 are removed and

belonging to C1
i2 are inserted to S1 if execution time of rule equals zero (C1

i4 = 0) and keeping
time equals zero (C2

2(p) = 0), or to S1
2 if execution time of rule doesn’t equal zero (C1

i4 ≠ 0),
or to S1

3 if execution time of rule equals zero (C1
i4 = 0) and keeping time doesn’t equal zero

(C2
2(p) ≠ 0). The variables of timing action are adding to S2

2 and S2
3 simultaneously with (8-

a) and (8-c).

5. RESULTS AND APPLICATION
So the defined environment and program implementation model of interpreted Petri net
enables simple implementation with any high level language. Specification of blocks C and S
can be declared as structures composed by required number of tables; blocks I and O – as
global variables. Decision block can be declared as a system of functions operating on
mentioned blocks. It was broadly depicted in [2,4].
This paper presents only methodology of initializing and performing of timing actions in
simple systems with industrial standard microcontrollers.
The idea of executing timing actions relies on using interrupt system in microprocessor
module. In general it must generate an interrupt with given constant frequency (e.g. 1 kHz). It
is possible to realize by using a generator connected to external interrupt pin or by using an
internal timer/counter (more recommended). The overflow that timer is indicated by calling
right interrupt. The interrupt handling procedure is used to decrement of auxiliary registers
storing information about actual state of timing actions.
At the initialization moment of timing action there is granted suitable variable with initial
value tp = ta*fi , where ta is a required time of action, fi is a frequency of calling interrupt int.
The value of tp is taken from right fields of specification block C (C1

i4 and C2
2(p)).

During interrupt handling procedure microprocessor performs decrement operations all
variables of timing actions. If any variable equals zero then it is taken operation assigned to
its ending and in next step it is removed from variables list:

∀(p∈S1
2) S2

2 = 0 ⇒ S1
2 = S1

2 – p and S2
2 = S2

2 – S2
2(p) and S1 = S1 + p (9-a)

∀(p∈S1
3) S2

3 = 0 ⇒ S1
3 = S1

3 – p and S2
3 = S2

3 – S2
3(p) and S1 = S1 + p (9-b)

Contents of block O is updated according to contents of blocks S1 oraz S1
2:

∀[p∉(S1∪ S1
2)] ∀[y∈C2

1(p)] O = O – y (10-a)
∀[p∈(S1∪ S1

2)] ∀[y∈C2
1(p)] O = O + y (10-b)

A precision of timing action is dependent on a lot of factors in proposed system. The most
important are: inaccuracy of generating interrupt system, delay of calling interrupt procedure,
time of interrupt handling, number of active timing actions, time of updating state block S,
reaction time of decision block and time of function I/O handling.
Suppose sufficient precision generating interrupt system there we can omit the deviation
assigned to it. The other factors are strongly dependent among other things on used processor,
its clock speed and quality of executable program code generated by given compiler.
In general the deviation of timing action is linear to number of decision rules and it’s
contained in given range. The range is possible to calculating in analysis process. A specific
value of this deviation (in the range of course) for given rules or places is dependent on
location the rules in specification block C. This is a result of sequential examining block C by
decision block in permitted rules searching.
A net modeling that system and an obtained results are presented in Fig.4.

P2 P4

P5
P3

P6<10s>

P9

P7<280s>P8<10s>

V1

V2

CRCL

H

P1

T1

T2 T3
b1 b2

T4

T5

T8

T6<5s>

T7<5s>

start

L1

b1 = !L2 + TL2
b2 = L2 * TL1

Fig. 4. Fragment of the net modelling washer controller with the results

As a test system was adopted single-chip microcontroller PCF 80C51HB-3 with 12MHz
clock. Program was compiled with µVision 2 tool (Keil Software).

6. SUMMARY
Application of the timed model Petri nets not only can effectively help on description level
for reactive system strongly time depended but it can be used in system decomposition
automation too (in Hardware/Software Co-Design sense [3]).
Further works and researches are to steer on studying generalized model for complicated
hierarchical nets. We are going to consider not only simplifications of implementation for nets
with complicated topology but also implementation of nets in distracted systems.

This work was supported by KBN grant: 7 T11C 010 20.

REFERENCES
[1] Adamski M.: Digital systems design by formal transformation of specification, Prep.35

Int. Wissen. Koll., TH Ilmenau, Germany, 1990, Heft 3, pp.62-65
[2] Andrzejewski G.: Parallel controllers design with program model of interpreted Petri

net, OWD’2000, Istebna-Zaolzie, 22-25.10.2000, pp.63-68 (in Polish)
[3] Andrzejewski G.: System decomposition in hardware/software co-design, RUC’2001,

Szczecin 7-8.05. 2001, pp.117-124 (in Polish)
[4] Andrzejewski G.: Program model of Petri net, accepted for publication in conference

proceedings CAD DD’2001, Minsk 14-16.11.2001, Belarus
[5] Banaszak Z., Kuś J., Adamski M.: Petri nets, Modeling, Control and Synthesis of

Discrete Systems, printed series of course lectures WSI in Zielona Góra, 1993 (in Polish)
[6] Bolton M.P.J.: Digital systems design with programmable logic, Addison Wesley Publ.

Company, Wakingham, 1990
[7] Gajski D.D., Vahid F., Narayan S., Gong J.: Specification and Design of Embedded

Systems, Prentice Hall, Englewood Cliffs, NJ, 1994
[8] F.Wagner: The Virtual State Machine: Executable Control Flow Specification, Rosa

Fischer-Löw Verlag, 1994,ISBN3-929465-04-3

