
The International Workshop
On Discrete-Event System Design, DESDes’01,

June 27-29; Przytok near Zielona Gora, Poland

SIMULATION AND TARGETING
USING OORT*

Sérgio LOPES, João MONTEIRO

Industrial Electronics Departament, Engineering School, University of Minho,
Campus de Azurém, 4800-058 Guimarães, PORTUGAL,

<sergio.lopes, joao.monteiro>@dei.uminho.pt

Abstract. The development of embedded systems requires both tools and methods which help the designer to
deal with the higher complexity and tougher constrains due to the different hardware support, the often
distributed topology and time requirements. Moreover, the last steps of each version of the design, namely,
simulation and targeting, should be made easier and faster to execute, in order to facilitate the correction of
problems and the issue of a new more correct version, thus increasing the frequency of an iterative
engineering process. This has a major impact on the overall costs and final product quality, and therefore
the use of a CASE tool that supports the chosen methodology becomes an obvious advantage. We have
applied the Object-Oriented Real-Time Techniques (OORT) method, which is oriented towards the
specification of distributed real-time systems, to the implementation of the Multiple Lift System (MLS) case
study. This paper describes briefly the method and presents our experience in the simulation and targeting of
developed system, namely the difficulties we had and the success we have achieved.

Keywords: Distributed Systems Specification, Software Engineering, Discrete-Event Systems Control,
Simulation, Targeting.

1. INTRODUCTION

Real-time systems are very complex because they are often distributed, run in different
platforms, have temporal constraints, etc. The development of these systems demand high
quality and increasing economic constraints, therefore it is necessary to minimise their errors
and its maintenance costs, and deliver them in short deadlines.
To achieve these goals it is necessary to verify a few conditions: decrease the complexity of
the systems through hierarchical and graphical modelling for high flexibility in the
maintenance; protect the investments with the application of international standards in the
development; to apply early verification and validation techniques to reduce the errors; and,
reduce the delivery times by automating code generation and increasing the level of
reusability. Finally, its necessary to have a tool that provides these conditions. The present
work was developed with the ObjectGEODEi toolset, that supports the OORT method.
The OORT method [14] is organised according to the diagram of figure 1 and applies the
Unified Modelling Language (UML), Message Sequence Chart (MSC) and Specification and
Description Language (SDL). The UML language is a de jure standard (see [5] for details) and
it is defined in [10]. The MSC was defined [8] as complement to SDL, both international
standards by ITU-T. [13] provides an introduction to MSC. SDL is defined by [6], [7] and [9],

* This work was supported by the Fundação para a Ciência e a Tecnologia PRAXIS XXI program of the Ministério da Ciência e Tecnologia
of the Portuguese Government.

however [11] is a more comprehensive reference, while [4] is a handy summary of the
language. The use of both languages together is guided by [10].
In this work we have applied the OORT method to the modelling of a case study – the
Multiple Lift System (MLS). A description of a MLS architecture using UML is presented in
[2]. The analysis model uses UML to model the system’s environment, and MSC to specify
the behaviour of the system. The system’s architecture is defined in SDL. The detailed design
uses SDL for the concurrent objects specification and UML for the passive components
description. The MSC language supports the test design activity. For the simulation of the
designed system we used the ObjectGEODE simulator, and finally we use the C Code
Generator for the targeting. Each of this steps in the systems engineering process is described
in the following sections.

Requirements Analysis

Scenario and MSC Diagrams
Use Case Modelling

Object Analysis
UML Class Diagrams

Architectural Design
SDL Hierarchical and

Interconnection Diagrams

Architectural Design Test Design

MSC Diagrams
Test Design

Detailed Design

Behavioural Design
SDL Process Diagrams

Data Modelling
UML Class Diagrams

TestImplementation

Figure 1. The OORT method.

2. REQUIREMENTS ANALYSIS

In the requirements analysis phase, the system environment is modelled and the user
requirements are described. The analyst must concentrate on what the system should do. The
environment where the system will operate is described by means of UML class diagrams –
object modelling. The functional behaviour of the system is specified by MSCs organised in a
hierarchy of scenarios - use case modelling.
The system is viewed from the exterior as a black box with which external entities (system
actors) interact. Both the object model and use case model must be independent of the
solutions chosen to implement the system.

2.1. Object Analysis
In the description of the system environment the class diagrams are used to express the
application and services domains. This is done by identifying the relevant entities of the
application domain (physical and logical), their attributes, and the relationships between them.
It is also necessary, for the sake of simplicity and expressiveness, to group entities and their
relationships in different modules that reflect different perspectives of the system, as is
supported by [16]. Generally speaking, there is one module for each of the actors that interact
with the system, one for some basic system composition and other to express certain
environment relationships.

Supervisor

SaveAlarm(Info : Alarme)
ReceivedDestination(Dest : Destination)
ServedDestination(Dest : Destination)
ScheduledCall(Ca : Call)
ReceivedCall(Ca : Call)
ServedCall(Ca : Call)
LiftState(State : LiftState)
StopSystem()

FloorAccess

Number : FloorType

Lift

Number : ElevatorType
Floor : FloorType
Direction : DirectionType
State : StateType

ServeDestination(Floor : FloorType)
ServeCall(Ca : Call)
EndOperation()

{1 <= Floor <= NF}

LiftShaft

MLS

1

NL

NLNF

1

Figure 2. System Architecture UML Class Diagram.

The generic system architecture is modelled in figure 2. In order to keep simple modules, each
of the component classes are refined in different diagrams.

2.2. Use Case Modelling
The use case model is composed by the scenario hierarchy and MSC diagrams. The scenario
hierarchy should contain all the different expected scenarios of interaction between the system
and its environment. The goal it is to model the functional and dynamic requirements of the
system. First, the main scenarios are identified, and then they are individually refined in
subsequent more detailed scenarios until the terminal scenarios can be easily described by a
chronological sequence of interactions between the system and its environment.
One problem of this approach is the scenario explosion. To deal with that difficulty we apply
composition operators that combine hierarchically the several scenarios. Nevertheless, the
problem is only diminished but not completely solved. It is still necessary to choose well the
scenarios, namely to chose those which are the most representative of the system behaviour.
The system operation is divided in phases that are organised by composition operators, and each
phase is a branch in the scenario hierarchy. Figure 3 shows the Trip phase scenario hierarchy, in
which we have a Floor Crossing terminal scenario which is illustrated in figure 4.
A constant concern must be the coherence between the use case and the object models. See [14] for
more details.

Trips

Trip

CrossesFloor

CrossFloor

Arrival WithOpenDoor

DoorOpened

KeepDoorOpened

CloseAndOpen CloseAndBlock

PassengerBlocks PotentialPassengerBlocks

DoorClosingInterrupted DoorClosingBlocked

PassengerBlocks PotentialPassengerBlocks

ExcessiveLoad CloseDoorWithFreeLift

StaysFreeOrGoesOnBusy

Figure 3. Scenario Hierarchy for the Trip Sub Scenario.

CrossFloor

ShowFloor (2)

NewFloor (2)

ShowFloor (2)

LiftState ((. 2,Up,Moving .))

IE_Lift_1

LiftStateIndicator

MLS_1

MLS

IE_Floor_1_Lift_1

LiftStateIndicator

SP_Lift_1

FloorSensor

Antonio

Operator

Figure 4. Abstract MSC for the Floor Crossing Scenario.

3. ARCHITECTURAL DESIGN

In this phase the system designers specify a logical architecture of the system (as opposed to
the physical architecture). The SDL language covers all aspects of the architecture design.
The system is composed of concurrent objects (those which have an execution thread) and
passive objects (those which implement a set of functions invoked by concurrent objects). In
the architecture design phase, the concurrent objects that compose the system are identified
and organised hierarchically. This is accomplished by a combination of refinement and
composition. The refinement is a top-down process in which higher level objects are divided
in smaller and more detailed objects, always trying to keep a good modularity. The
composition is a bottom-up process in which designers try to group objects in such a way that
favours reutilization and that maintains a good encapsulation of the architectural objects.
Figure 5 illustrates the SDL object’s hierarchy of the MLS.
In the architectural design, the real characteristics of the environment where the system will
operate should be considered, as well as the efficiency aspects. On the other hand, the SDL
model should be independent of the real object distribution on the final platform.

MLS

FloorAccess

(1,1) (1,1)(1,1)
FloorDoor

(1,NL) (1,1)
CallPanel

Lift

Lift(1,1) DestinationPanel CableMonitor LiftDoor(1,1)

Central

Supervisor Gnome(1,1)

(NF):Floor
Floors Lifts(NL):Lift

Figure 5. MLS SDL Hierarchy Diagram.

At the first level, the system actors are considered through their interfaces, and modelled as
channels between the system top level objects and the outside world. Figure 6 shows the top
level of the MLS architecture.

system MLS Operador

StopSystem

MonitoringAndControl

EndOperation

ReceivedDestination ,
ServedDestination ,
ScheduledCall ,
SaveAlarm

FloorSensor

NewFloor

StressSensor

StressChangedDoorSinchronisation

Blocked ,
AckOpen,
AckClose

Open,Close

Calls

ScheduleCall ,
IdPC, IdPP

ServedCall,
AckScheduleCall ,
IniOk, PIdPE

Scheduling

ServeCall ,
IniOk, PIdPP

LiftState ,
AckServeCall ,
IdE, IdPE

CallButton

Pushed

BlockingSensors

Blocked

ButtonsAndBlockingSensors

Pushed

DestinationButton

Pushed

FloorAlarms

SaveAlarm

FloorAccess

Lift

Central

Floors(NF)
:FloorAccess

GCSPGOP

GBC GEGA

Lifts(NL)
:Lift

GE

GCSP
GOCP GBD

GST

GSC GSP

Figure 6. SDL Interconnection Diagram of the Top Level of the MLS Hierarchy.

Some passive objects are also defined, such as signals with complex arguments, Abstract Data Types
(ADTs) associated with internal signal processing, and operators to implement the I/O communication
with the outside world (instead of signals).
The use of SDL assures the portability of the system architecture, since the communication
service is independent of the real object distribution, the communication channels are
dynamic, and the objects can be parameterised.

4. DETAILED DESIGN

The description of concurrent and passive objects that constitute the system architecture is
done in the detailed design phase. In other words, it is described how the system implements
the expected services, and it should be independent of the final platform where the system will
run.

process FloorDoor
(1,NL)

SIGNALSET
 LiftFloorNum;

DCL
 MyFN FloorType,
 MyLN LiftType,
 LiftDoor PID,
 void VoidType;

TIMER NoAck := DoorComandTime;

Init

EXPORTED Open

EXPORTED Close

Init

Closed

Opening

Opened

RESET
(NoAck)

AckOpen
TO LiftDoor

Opened

NoAck

SaveAlarm
((. FDDoesNotOpen,

MyLN,MyFN .))

-

Closed,
Closing

PROCEDURE
Open

SET (NoAck)

Opening

Opened

PROCEDURE
Close

SET (NoAck)

Closing

Closing

Closed

RESET
(NoAck)

AckClose
TO LiftDoor

Closed

NoAck

SaveAlarm
((. FDDoesNotClose,

MyLN,MyFN .))

-

Blocked

Blocked
TO LiftDoor

void := Open()

SET (NoAck)

Opening

Figure 7. SDL Process Diagram of the Floor Door Process.

4.1. Concurrent Objects Design
The concurrent objects are the terminal objects of the SDL hierarchy. They are SDL processes
and are a kind of Finite State Machine (FSM), with its states and state transitions, called
process diagrams. The process diagrams are built by analysing the input signals of each
process defined in the architecture model and how the answer to those signals depends on the
previous states. The SDL has a set of mechanisms to describe the transitions that allow a
complete specification of the process behaviour. In the figure 7 is shown a process diagram.
The reuse of external concurrent objects is supported by the SDL encapsulation and
inheritance mechanisms.

4.2. Passive Objects Design
Some passive objects are identified during the analysis phase. Generally they model data used
or produced by the system, and they are included in the detailed design to provide services to
concurrent objects. There are also passive objects that result from design options, such as data
management, user interface or equipment interface and inclusion of other design techniques.

Although the SDL ADTs provide a way to define passive objects they are better defined by
UML classes. So the ADTs from the SDL detailed design model are translated to UML
classes and organised in detailed design class diagrams.
The reuse of external passive objects is facilitated by the UML encapsulation and inheritance
mechanisms. These characteristics of UML, and also SDL, allow for the use of other
techniques of design in certain systems. For instance, in the case of embedded systems, it can
be useful to use VHDL to design some physical parts.

4.3. Portability
The multi-tasking, the communication and the time management are implemented by the SDL
virtual machine, and therefore are independent of the physical platform and RTOS on which
the system will run. The system maintenance is kept at the SDL specification level, thus it is
easier to correct and change the system. However, the portability depends largely on the
language chosen to implement the passive objects.

5. TEST DESIGN

In this phase, the communication between all the elements of the system architecture is
specified by applying detailed MSCs to describe the sequences of messages exchanged
between them, in all the scenarios that compose the use case model. This is done by refining
the abstract MSC of each terminal scenario from the analysis according to the SDL
architecture model. Consequently, the test design activity can be done in parallel with the
architecture design and serve as requirements to the detailed design phase.
In the intermediate architecture levels, the detailed MSCs represent integration tests between
the concurrent objects. The last step of refinement correspond to unit tests that describe the
behaviour of processes (the terminal SDL architecture level).
The process level detailed MSCs can be further enriched by including in each process behaviour
detailed graphical elements such as states, procedures and timers.
Figure 8 shows the integration test corresponding to figure 4 abstract MSC, and figure 9
represents the respective unit test for one of the blocks.
This phase can be a very long and resource consuming, thus substantially increasing the
system development cost. However, it is decisive to the system success.
The use case model reflects the user perspective of the system. The test design should be
spread to cover aspects related to the architecture, such as performance, robustness, security,
flexibility, etc.

CrossFloor

LiftState ((. 3,Down,Moving .))

NewFloor

Central

block
/MLS/Central

'Window := UpdateState
(Window,1,(. 3,Down,Moving.))'

Lifts_1

block
/MLS/Lifts_1

'NewFloor ()'

'ShowFloor (Floor)'

Figure 8 –Detailed MSC with Floor Arrival Integration Test.

Central

LiftState ((. 3,Down,Moving .))
LiftState ((. 3,Down,Moving .))

Supervisor_1

process
/MLS/Central/Supervisor

'Window := UpdateState
(Window,1,(. 3,Down,Moving .))'

Gnome_1

process
/MLS/Central/Gnome

Figure 9. Detailed MSC with Floor Arrival Unit Test of Block Piso.

6. SIMULATION

With the ObjectGEODE simulator one can simulate SDL models, comparing them with
MSCs that state the expected functionalities and error situations, and generating MSCs of the
actual system behaviour. The execution of an SDL model is a sequence of steps, firing
transitions from state to state.
The simulator has three operation modes: interactive - in which the user acts as the system
environment and monitors the system's internal behaviour; random - the simulator executes
the SDL model picking randomly one of the transitions possible to fire; exhaustive - the
simulator automatically executes the model and explores all the possible system states.
The interactive model can be used to do the first tests to verify in a detailed way some
important situations to correct and complete the overall behaviour of the system, i.e., to verify
that the system really works. This mode was very useful to detect some flaws in ADTs whose
operators were specified in textual SDL. For instance, the ADTs responsible for the calls
dispatch, which are heavy computational, needed a little touch in the algorithms. As the SDL
simulator has a granularity of one transition, we can not go step by step inside the operations
executed during the transition from one state to another. But we can see that one transition
does not follow the expected path or that some variable does not have the value it was
supposed to have after that transition. Therefore, with that information, we can inspect more
closely the operators called by the transition and verify their code correctness, but most of the
times it is immediately evident which operator is wrong. This mode is specially suited for
rapid prototyping.
Obviously, this is not an adequate way to simulate a large number of cases. After a certain
level of confidence in the overall application behaviour is achieved, we can test for a larger
number of scenarios, in order to detect dynamical errors such as deadlocks, dead code,
unexpected signals, signals without receiver, overflows, etc. To do this we simulate in the
random mode, to verify if the system is being correctly built. This mode allows to do the
system verification.
However, we can do that with the exhaustive simulation, in fact we can do everything with the
exhaustive simulation, but it would not be efficient? The exhaustive simulation requires a lot
of computer resources and takes a lot of time. It's not something you can do everyday. The
introduction of this mode between the interactive and the exhaustive is a very good solution
because we can save a lot of time. We can detect most of the errors in a much quicker way.
The exhaustive simulation allows to make the validation of the system, i.e., to verify if the
system meets the requirements. We can check if it implements the expected services, by
detecting interactions that do not follow some defined properties, or interaction sequences that

are not expected.

7. TARGETING
The implementation of the designed system is made easier by the code generator of the
ObjectGEODE, which automatically translates the SDL specification to C code. The
generated code is independent of the target platform in which the system will run. The SDL
semantics, including the communication, process instance scheduling, time management and
shared variables, is implemented by a dynamic library. That library is also responsible for the
integration with the executing environment, namely the RTOS. By default the
communications are implemented through TCP/IP sockets.
In order to generate the application, it is necessary to describe the target platform in which the
system will be executed, This is done by means of a mapping between the architecture of the
SDL specified system and the architecture of the C code implementation.
The SDL architecture consist in a logical architecture of structural objects (system, blocks,
processes, etc...) in which the lower objects (the processes) implement the behaviour of the
described system. The physical implementation of that description consist in a hierarchy of the
following objects: node - all the software executed by one processing unit with multi-tasking
OS; task - unit of parallelism of the OS. One task can correspond to one of the SDL objects:
system - Task/System (TS) mapping; Block - Task/Block (TB) mapping; process -
Task/Process (TP) mapping; Process Instance - Task/Instance (TI) mapping.
In the TI mapping the complete application is managed by the target OS. In the TP mapping,
the OS is in charge of the interaction between processes, whilst the management of the several
process instances inside the task is done by the SDL virtual machine of ObjectGEODE. In the
case of TB mapping, the OS manages the communication between blocks, while the
management of the SDL objects inside each block is done by the SDL virtual machine.
Obviously, the TS mapping is the only one possible for operative systems without multi-
tasking and in each node the SDL virtual machine manages all the application. For the MLS,
the TP mapping was chosen.
After the code is generated, the user only has to supply the missing code for the parts that
interact or depend directly on the platform. Therefore, the user can choose the language which
best suits his needs and then link that code with the generated code. The ADT operators that
do not interact with external devices, can be coded algorithmically in SDL, and thus the
respective C code will be generated. By default, to each ADT operator corresponds one C
function which interface is automatically generated. The figure 10 illustrates the application
generation scheme in a very simplistic manner.

Generated
C code

User
Code

Dynamic Library

RTOS

Physical Architecture

SDL Specification

Architecture
definition

Figura 10. Simplified strategy for the application generation.

8. CONCLUSION

The simulation is a very important phase of the system's development because it allows the
costs reduction by decreasing the number of missed versions, i.e., it helps the designers to get
closer to the "right at first time". The three simulation modes can be used by the order
presented, i.e., in the order of the increasing level of system correctness.
The code generated by the ObjectGEODE toolset is optimised for the target platform by
means of a mapping between the SDL architecture and the physical architecture defined by the
user. Any change in the application target it only requires a change in the mapping, so the
system specification and its logical architecture remain the same. The user only has to supply
the code which is target dependent.
Because SDL is a formal language it can be used to define rules in the partition and synthesis
of a system specification into hardware and software, as is the case of a methodology
presented in [1]. Furthermore, the implementation can be automatic, thus limiting the manual
coding to the non real-time operations. The generated application is scalable, because the
logical architecture is independent of the physical architecture. The mapping between objects
and hardware is define in the implementation phase only.
The SDL specification, being a model expressed in a formal language, permits the automatic
simulation of the system [3], to make early validations, and the automatic code generation.
The simulation of a formal language is trustable since it is defined by a clear set of
mathematical rules. Therefore, comparing to the non formalised development, the applications
are better in terms of efficiency, less errors, flexibility and easy of maintenance.

REFERENCES
[1] J.M. Daveau, G.F. Marchioro, T. Ben-Ismail and A.A. Jerraya, “Cosmos: An SDL Based

Hardware/Software Codesign Environment”, in: Hardware/Software Co-design and Co-Verification,
eds. Bergé, J-M, Levia, O. and Rouillard, J., Kluwer Academic Publishers, 1997, 59-87.

[2] B.P. Douglass, Real-Time UML: Developing Efficient Objects for Embedded Systems (Addison-
Wesley, 1998).

[3] V. Encontre, How to Use Modeling to Implement Verifiable, Scalable, and Efficient Real-Time
Application Programs, Real-Time Engineering, Fall 1997.

[4] O. Faergemand and A. Olsen, Introduction to SDL-92, Computer Networks and ISDN Systems,
26(9), 1994.

[5] Cris Kobryn, UML 2001: A Standardization Odyssey, Communications of the ACM, 42 (10), 1991,
29-37.

[6] ITU-T Recommendation Z.100, Specification and Description Languge (SDL), March 1993.
[7] ITU-T Recommendation Z.100 Appendix 1, SDL Methodology Guidelines, March 1994.
[8] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), ITU, October 1996.
[9] ITU-T Recommendation Z.100 Addendum 1, Specification and Description Languge (SDL)

Addendum 1, October 1996.
[10] ITU-T Recommendation Z.100 Supplement 1, SDL + Methodology: Use of MSC and SDL (with

ASN.1), May 1997.
[11] A. Olsen, O. Faergemand, B. Moller-Pedersen, R. Reed, J.R.W. Smith, Systems Engineering Using

SDL-92 (North Holland, 1994).
[12] OMG Unified Modeling Language Specification, Version 1.3, June 1999.
[13] E. Rudolph, P. Graubmann, J. Grabowski, Tutorial on Message Sequence Charts, Computer

Networks and ISDN Systems, 28(12), 1996.
[14] Verilog, ObjectGEODE Method Guidelines (Verilog SA, 1996).
[15] Verilog, ObjectGEODE SDL Simulator Reference Manual (Verilog SA, 1996).
[16] E. Yourdon, Object-Oriented Systems Design: An Integrated Aproach (Prentice Hall, 1994).

i ObjectGEODE is a registered trademark by Verilog.

