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Abstract. The paper addresses the issue of prototyping hw/sw architecture of 
application-specific multi-processor systems (recently on a chip). Performance 
prediction of these systems, either bus-based SMPs or message-passing networks 
of DSPs, is undertaken using a CSP-based tool Transim. Variations in processor 
count, clock rate, link speed, bus bandwidth, cache line, as well as in partitioning 
and mapping the resulting sw components to processors can be easily accounted 
for. The technique is demonstrated on parallel FFT on 2 to 8 processors. 
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1. INTRODUCTION  
The design of mixed hw/sw systems for embedded applications has been an active research 
area in recent years. Hw/sw co-synthesis and co-simulation have been mainly restricted to  
a single processor and programmable arrays attached to it, that were placed incidentally on  
a single chip (SoC). A new kind of systems, application-specific multi-processor SoC, is 
emerging with frequent applications in small-scale parallel systems for high-performance 
control, data acquisition, and analysis, image processing, wireless, networking processors, and 
game computers. Typically several DSPs and/or microcontrollers are interconnected with an 
on-chip communication network and may or may not use an operating system. In this paper, 
we want to concentrate on performance prediction of various configurations of hw and sw, 
since performance guarantees must be complied with before anything else can be decided. 
Other difficult problems such as system validation at the functional level and at the cycle-
accurate level, software and RTOS synthesis, task scheduling and allocation, overall system 
testing, etc., are not considered. 

In this paper we will study only application-specific multiprocessors and modeling their 
performance. As a suitable application for performance comparison, we have selected  



a parallel FFT (1024) benchmark (1024 points, one dimension), in real-time environment, 
with the goal of maximizing the number of such FFTs per second.  

2. ARCHITECTURES OF PARALLEL EMBEDDED SYSTEMS AND CMP 

The performance race between a single large processor on a chip and a single-chip 
multiprocessor (CMP) is not decided yet. Applications such as multimedia point to CMP with 
multithreaded processors [1] for the best possible performance. The choice between 
application-specific (systolic) architectures or processors on one hand and CMP on the other 
is yet more difficult. CMP architectures may also take several forms such as:  

- a bus-based SMP with coherent caches similar to Pentium Pro quad pack, with an atomic 
bus or a split-transaction bus; 

- a SMP with a  crossbar located between processors and a shared first-level cache which in 
turn connects to a shared main memory; 

- a distributed memory architecture with a direct interconnection network (e.g. a hypercube) 
or an indirect one (the multistage crossbar).  

As the number of processors on the chip will be typically lower than 10, at least in a near 
future, we do not have to worry about scalability of these architectures. Therefore the bus 
interconnection will not be seen as too restrictive in this context.  

Some more scalable architectures such the SMP with  processors and memory modules 
interconnected via a multistage interconnection network (the so called „dancehall“ 
organization) or a hw-supported distributed shared memory will not be considered  as 
candidates for small-scale parallel embedded systems or SoCs.  

Let us note, that the choice of architecture can often be also dictated by a particular 
application to be implemented in parallel. E.g. broadcasting data to processors, if not hidden 
by computation, may require a bus for speed, but on the contrary, all-to-all scatter 
communication of intermediate results will be serialized on the bus and potentially slower 
than on a direct communication network. Some decisions can be supported by back-of-the-
envelope calculations, others are more difficult due to varying message lengths or irregular 
nature of communications. This is where simulation fits into. 

For the sake of the presented case study, we will investigate the following (on-chip) 
communication networks: 
1. fully connected network 
2. SF hypercube 
3. WH hypercube 
4. Crossbar switch 
5. Atomic bus. 
The number of processors p = 2, 4, and 8.  The problem size of a benchmark (parallel 1D-
FFT) will be n = 1024 points. 

3. THE SIMULATION TOOL AND THE  DESCRIPTION LANGUAGE 

A performance modeling has to take characteristics of the machine (including an operating 
systems, if any) and application and predict the execution time. Generally it is much more 
difficult to simulate performance of an application in shared address space than in message 
passing, since the events of interest are not explicit in the shared variable program. In the 
shared address space, performance modeling is complicated by the very same properties that 



make developing a program easier: naming, replication and coherence are all implicit,  i.e. 
transparent to the programmer, so it is difficult to determine how much communication occurs 
and when, e.g when cache mapping conflicts are involved [5].  

Sound performance evaluation methodology is essential for credible computer architecture 
research to evaluate hw/sw architectural ideas or trade-offs. Commonly used shared-memory 
simulators rsim, Proteus, Tango, limes or MulSim [2], beside their sophistication, are not 
suitable for message passing systems. This made us to reconsider the simulation methodology 
for shared-memory multiprocessors. Here we suggest using a single CSP-based simulator 
both for message passing as well as for shared address space. It is based on simple 
approximations and leaves the speed vs. accuracy tradeoff on the user, who can control the 
level of  detail  and accuracy of simulation. 

The CSP-based Transim tool can run simulations written in Transim language [3]. It is a 
subset of Occam 2 with various extensions. Transim is naturally intended for message-passing 
distributed memory systems. Nevertheless, it can be used also for simulation shared memory 
bus-based (SMP) systems - bus transactions in SMP are modeled as communications between 
node processes and a central process running on an extra processor. Transim also supports 
shared variables, which are used in modeling locks and barriers. Until now, only an atomic 
bus model has been tested; the split-transaction bus requires more house-keeping and  its 
model is going to be  developed in a near future. 

The input file for Transim simulator tool contains descriptions of software, hardware and 
mapping to one another. In software description, control statements are used usual way, 
computations (integer only) do not consume simulated time. That is why all pieces of 
sequential code are completed or replaced (floating point) by special timing constructs SERV 
( ). Argument of SERV( ) specifies the number of CPU cycles taken by the task. Granularity 
of simulation is therefore selectable from individual instructions to large pieces of code. 
Explicit overhead can be represented directly by WAIT() construct. Data-dependent 
computations can be simulated by SERV construct with a random number of CPU cycles. 
Some features of a RT distributed operating system kernel, originally supported by hw in 
transputers, are also built into the simulator, such as process management, process priorities 
(2 levels only), context switching, timers, etc. 

The NODE construct in hardware description is used to specify the CPU speed, 
communication model and other parameters; otherwise the default values are used. The 
mapping between software and hardware, between processes and processors, is made through 
the MAP construct. Parallel processes on different processors, one process per processor, are 
created by PLACED PAR construct for MPMD or by replicated PLACED PAR for SPMD 
model of computation. 

4. THE PARALLEL FFT BENCHMARK PROGRAM 

We will illustrate the technique of optimization of hw/sw multiprocessor architecture on the 
problem of computing the 1D-, n-point-, discrete Fourier transform on  p processors in O((n 
log n)/p) time. Let  p divides n, n = 2q  is a power of two and n ≥ p2. Let the n-dimensional 
vector x [n×1] be represented by matrix X[n/p×p] in row-major order (one column per 
processor). The DFT of the vector x is given by 
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where S [n/p× p] is the scaling matrix, * is elementwise multiplication and  the resulting 
vector y [n×1] = Wn x is represented by matrix Y [n/p×p] in column major order form (n/p2  
rows per processor). Operation denoted by T is a generalized matrix transpose that 
corresponds to the usual notion of matrix transpose in case of square matrices [4]. 

The algorithm can be performed in the following three stages. The first stage involves a local 
computation of a DFT of size n/p in each processor, followed by the twiddle-factor scaling 
(elementwise multiplication by S). The second stage is a communication step that involves a 
matrix transposition. Finally, n/p2 local FFTs, each of size p, are sufficient to complete the 
overall FFT computations on n points. The amount of computation work for the sequential 
FFT of an n-element real vector is n log n / 2 “butterfly” operations, where one butterfly 
represents 4 multiplications and 6 additions/subtractions (20 CPU clocks in simulation). In 
parallel implementation the computation work done by p processors is divided into stage 1 
and 3, but the total amount of work is the same,  
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Let us note, that the work done in stage 1 proportional to (log n - log p) is much larger than 
the work done in stage 3, proportional to log p.  The only overhead in parallel implementation 
is due to a matrix transposition. The matrix transposition problem is equivalent to all-to-all 
scatter (AAS) group communication. Clearly, it requires 1 step in a fully connected topology, 
p/2 steps (a lower bound) in the SF-hypercube, p-1 steps in the WH-hypercube or a crossbar, 
and finally p(p-1) bus transactions on a bus. 

FFT processing will be done continuously in real time. Therefore loading of the next input 
vector from outside and writing the previous results from processors to environment will be 
carried out in the background, in parallel with three stages of processing of the current input 
vector (with the first stage of processing only in the shared memory case). 

5. PARAMETERS OF SIMULATED ARCHITECTURES AND RESULTS OF 
SIMULATION 

Six architectures simulated in the case study are listed in Tab.1 together with the execution 
time. The CPU clock rate is 200 MHz in all 6 cases, the external channel speed of 100 Mbit/s 
(12 MB/s) is used for serial links in  all message-passing architectures, whereas bus transfer 
rate for SMP is 100 MB/s. Downloading and uploading of input data and results were 
supposed to continue in the  background in all processors simultaneously at 8-times higher 
rate than the link speed, which is almost equivalent to the bus speed in SMP case. In message-
passing architectures the AAS communication was overlapped with submatrix transposition 
as much as possible. Optimum routing algorithm for SF hypercube and AAS communication 
requires p/2 steps and  uses a schedule tables at Fig.1. In case of WH hypercube, dimension-
ordered routing is used in every  step i, i = 1, 2,…, p-1, in which src-node and dst-node with 
the relative addresses RA = src ⊕ dst = i  exchange messages.  

 
The small cluster of (digital signal) processors, referred to as COSP in Tab.1, uses a 
centralized router switch (Omega type) with  sw/hw overhead of  5 µs, the same as a start-up 
cost of  serial links, and WH routing. The algorithm for AAS was designed to avoid 
contention using cyclic permutations [e.g (01234567), (0246)(1357), …, (07654321)] for p=8.  

Finally a bus-based shared memory system with coherent caches (SMP) has had 100MB/s bus 
bandwidth, 50 MHz bus clock, and the miss penalty of  20 CPU clocks. We will assume an  



 

Fig. 1. . Optimum schedule for AAS in all-port full-duplex 2D- and 3D- SF hypercubes 
 

atomic bus for simplicity and fair bus arbitration policy. Other types of bus arbitration 
(priority-based, random, etc.) are also feasible.   The cache block size is 16 bytes and the size 
of the cache is assumed to be sufficient to hold input data (a real vector), intermediate data 
after the first stage of FFT (a complex vector) as well as the results (a complex vector). In  the 
worst  case (p=2) the size of all these vectors will be around 10 kB, if we use REAL32 
format. We assume I/O connected via a bus adapter directly to the cache. To avoid arbitration 
between CPU and I/O, the next input and previous results are transferred in/out during the 
first stage of  the FFT algorithm. 

The results summarized in Tab.1 and plotted in Fig.2 deserve some comments. A fully 
connected network of processors is the fastest architecture for 8 processors, but  the slowest 
for 2 processors. The reason is that communication is mostly seen as an overhead, but gets 
better overlapped with communication when p increases. The cluster of DSPs (COSP row in 
Tab.1) starts with p=4 and increasing the number of processors from 4 to 8 does not make 
much  sense  because it  has small influence  on speed.   

Tab.1. Parallel FFT execution times in µs for six analyzed architectures 

 
In the SMP with shared bus, processors write the results of the n/p-point FFT computed in 
stage 1 into the local caches and do the transposition at the same time. This means that 
consecutive values of FFT will be stored with a stride required by the rule of matrix 
transposition. The following read requests by other processors at the start of stage 3 will 
generate read misses: at cache block size 16 bytes, one miss always after 3 hits in a sequence. 
Fresh cache blocks will be loaded into requestor’s cache and simultaneously into the shared 
memory. A prefetch of cache blocks has been simulated without an observable improvement 
in speed, most probably due to bus saturation. This is even worse for 8 processors than for 4, 
see Fig.2. 

As for hypercubes, the WF hypercube is superior and gives the same results as a cluster of 
DSPs. Slightly worse performance than that of a fully connected processors is balanced by 
much simpler interconnection and by a lower number of communication ports.  

 

 

      p = 2 4 8
full 436,8 180,8 138
COSP 230,4 173,1
SMP 363,5 304,7 321,6
SF cube 272 182,8
WH cube 230 174,4

relative addr. used in dimension
step 0 1 2

RA  in dimension 1 3 6 4
step 0 1 2 1 7 6

1 3 2 3 7 2 5
2 1 3 4 5 3 7



 

 

 

 

 

 

 

 

 

 

 

Fig.2. Comparison of execution times [µs]  for six architectures. 

6. CONCLUSIONS 
The performance study of the parallel FFT benchmark on a number of architectures using 
Transim tool proved to be a useful exercise. Even though the results of simulations have not 
been confronted with real computations, they can certainly serve to indicate serious candidate 
architectures that satisfy certain performance requirements. The approximations hidden in 
simulation are limiting accuracy of real-time performance prediction, but the level of detail in 
simulation is given by the user, by how much time he or she is willing to spend on building 
the model of hw and sw. For example, modeling the split-transaction bus or the contention in 
interconnection network for WH routing could be quite difficult. The latter was not attempted 
in this case study since the FFT benchmark requires only regular contention-free 
communication. This, of course, will not be generally the case. Nevertheless, simulation 
enables fast varying of sw/hw configuration parameters and studying the impact of such 
changes on performance, free from the second-order effects. In this context, the CSP-based 
Transim simulator and language proved to be very flexible, robust and easy to use. The future 
work will continue to include other benchmarks and analyze the accuracy of performance 
prediction.               
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