
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

UML EXTENSIONS FOR MODELING
REAL-TIME AND EMBEDDED SYSTEMS

Sławomir SZOSTAK1, Silva ROBAK2, Roman STRYJSKI1,
Bogdan FRANCZYK1,

1 Pedagogical University of Zielona Gora, Technical Institute,
ul. Wojska Polskiego 69, 65-762 Zielona Gora, POLAND, S.Szostak@wsp.zgora.pl,

 Stryjski@post.pl
2 Technical University of Zielona Gora, Institute of Computer Science and Management,

ul. Podgorna 50, 65-246 Zielona Gora, Robak@pz.zgora.pl

Abstract. The process of modeling and developing of real-time and embedded
systems should be supported by suitable methods and notations. In the paper we
examine different approaches for customizing standard modeling language UML to
model such systems in object-oriented analysis and design. We propose the use of
UML standard lightweight extensibility mechanisms (stereotypes) without
changing the UML metamodel. Our approach allows joining advantages of
extended sequence diagrams and timing diagrams with UML and provides
traceability of a concept throughout system development. The examples illustrate
our approach. Applying lightweight UML extension mechanism allows existing
standard UML modeling tools to be used without any adaptations.

Key Words. Real-time and embedded systems, UML extensibility mechanisms,
extended sequence diagrams

1. INTRODUCTION
The Unified Modeling Language (UML) adopted by OMG [8] as its standard modeling
language has emerged as the software industry's dominant language. UML is a general-
purpose graphical language for specifying, constructing, visualizing, and documenting
workproducts that are modified, or used by software-intensive systems [1]. The UML needs
to be extended for proposes of modeling real-time and embedded systems. It can be done
either by using UML lightweight extensibility mechanisms (such as stereotypes, constraints
and tagged values) or by heavyweight extension mechanisms - metaclasses. Metamodel level
is a one layer of the UML's four-level model architecture based on metamodel architectural
pattern [5]. The metamodeling offers significant advantages. It allows formal specification of
all modeling concepts (together with their attributes, constraints and relationships), defines a
base for unified exchange format and makes possible the extendibility of UML, i.e.
instantiation of new metamodel classes as subclasses of the existing metamodel classes.
Although changing the metamodel underlying the UML offers the highest degree of

flexibility, we have not taken it into consideration because the metamodel is not accessible or
difficult to modification in existing UML modeling tools.

In the paper we present an approach for modeling real-time and embedded systems using
UML. We present a concept for distinguishing model elements with stereotypes and then we
examine known approaches for extending UML such as extended sequence diagrams for
modeling real-time systems and also the use of timing diagrams.

2. EXTENDS OF STANDARD UML FOR REAL-TIME SYSTEMS

2.1. Stereotypes
Lightweight extension mechanisms are represented in UML metamodel as metamodel's
classes named Stereotype, Constraint and TaggedValue. Stereotypes are a way of extending
the basic metamodel to create a new model element as a subclassification of an existing model
element. Stereotypes are used to mark, classify, or introduce new model elements in
metamodel class hierarchy. Every model element may be marked with at most one stereotype,
which is depicted in front of an element's name enclosed in double angle brackets, and/or
represented graphical as an icon.

To model an element, which corresponds to a feature of real-time and embedded systems, we
may introduce new stereotypes i.e. the objects such as a processor can be divided into the
processors <<cisc>> and <<risc>> by using a stereotype, and thus give them the different
features. The UML already predefines some stereotypes for classes, messages, objects, and
etc [7]. The instance class containing the stereotype <<active>> is shown in Figure 1.

Fig. 1. Example class with stereotype <<active>>

Examining the real-time systems at building the stereotypes, it should take the characteristic
features which derive from a given application domain into consideration. Suppose our
system consists of the typical elements of industrial automation such as: processors, drivers,
sensors, actuators, networking, monitoring, etc. For these and similar systems, i.e. embedded
systems., safety-critical systems, the instance stereotypes can be distinguished in the UML for
various elements. They are presented in Table 1-3.

Table 1. Stereotypes for nodes
UML Type Stereotype About stereotype

<<processor>> represents device that
executes software

<<other device>> device that can not
executes any software

Node

<<sensor>> device that monitors
course of external
processes

<<actuator>> Device that aktuates
external process or other
internal device

<<display>> device that displays
information for external
actor (user)

<<knob>> input device for external
user

<<button>> input device for external
user

<switch>> input device for external
user

<<watchdog>> sensor that waits for
fail-safe behaviour

Table 2. Stereotypes for messages (communications)
UML Type Stereotype About stereotype

<<synchronous>> association realized as
simple method call
(directly)

<<asynchronous-
local>>

association that crosses a
thread boundary and put
the message in target
thread’s queue

<<asynchronous-
remote>>

association that crosses a
processor boundary and put
the message in target
thread’s queue without
waiting for answer

<<synchronous-
remote>>

association that across a
processor boundary and
block sender until
receiver returns answer

<<periodic>> message is sent
periodically

<<episodic>> message is sent when event
occurs

message

<<epiperiodic>> message is sent periodic
and when event occurs

Table 3. Stereotypes for classes
UML Type Stereotype About stereotype
class <<active>> class is the root of an

operating system thread

2.2. Scenarios
In each system some processes, which range the definite objects of this system, occur. Each of
these processes consists of the elementary entities (i.e. external and internal calls, messages,
interacts with actors, between objects etc.), whose chronological set composes a certain path
or a branching tree through the system behavior. Such a path (or a branching tree) is called a
scenario. Each scenario is based on a set of the objects and actors. The system behavior is
composed of many completely independent and/or partly correlated paths. Only many such as
scenarios produce a full image of the use-case system. Scenarios contain information about
events both important and incidental for a system, but mostly scenarios are constructed basing
on the most important elements. If scenarios differ only in the incidental elements, they are
ignored. There are some various methods to describe a scenario: textual description, sequence
diagrams and state diagrams [2]. The first method is not interesting because of its informality.

The state diagrams do not distinguish themselves anything specific for the real-time systems.
Therefore, we study the extended sequence diagrams.

As we know, a sequence diagram shows the flow of messages between the objects of the
system and the actors (Figure 2).

Fig. 2. Simple sequence diagram example

This diagram does not regard any following requirements for the real-time systems:
- execution time of event or message
- rise and fall time
- initiation and dwell time
- slack time
- deadline
- period
- leading and trailing jitter.

Therefore, some additional elements of a sequence diagram have been introduced for the real-
time systems:

- timing marks: simple and conditioned
- state marks
- event mark.

Timing marks definite the duration of the time of a single event or message. This time is
indicated between the start and the end of message (i.e. {< 20 ms}), or as the interval between
the events (i.e. {t1 - t2 <= 10 ms}). It is called a simple timing mark. We may also indicate the
duration of the time of a greater number of events (i.e. {t5 - t1 < 0.5 s, but t3 – t2 < 100 ms}).

Event marks represent the events that give rise to the message on the time line referred to the
relevant object. The letters or symbols (shown on Figure 3 as indexed) on the time line
written at the opposite ends of the message arrow, respectively indicate them.

State marks are to bridge a certain gap between the sequence and state diagrams. State
diagrams do usually not depict the time dependencies between the states, and sequence
diagrams do not show the present state of the system. State marks are the rounded rectangles
placed on the time line off to the relevant object.

Fig. 3. Extended for real-time sequence diagram example

Timing diagrams are another way of representing a path of the system behavior. They have
been known to electrical engineers for a long time (as well as to people who focus on
programming the industrial controllers) as the diagrams being used in designing the electrical
state machines (digital). They are, however, extended: the axis X depicts the time, but the axis
Y can represent more than two states: on and off (or 1 and 0, H and L). Along the axis X there
are some gaps, which separate the different states. If the system is in the defined state, a line
(function) will be drawn in that state. On the axis Y along the state line there are special
names of the states as well as the indicated events that give rise the relevant state (Figure 4).

Fig. 4. Timing diagram for one scenario

This diagram depicts a development of events in time in a simplification, however. This
considers only the timing of the particular states and enables it to show the only one scenario
(for the only one object). It is possible to place more than one scenario in the timing diagrams,
regarding the respective periods of the duration of the states (Figure 5 and 6).

3. SUMMARY
The approach described above allows combining the advantages of standard modeling with
UML diagrams adopted for real-time and embedded systems. Traceability of a concept
throughout system development is provided. Using only lightweight UML extension
mechanisms (stereotypes) means, that existing standard UML modeling tools can be used
without any extensions or adaptations.

Fig. 5. Timing diagram for multiple scenarios

Fig. 6. Complex timing diagram for one event of scenario

In order to reach more comprehensive support for real-time and embedded systems modeling
the next step is the integration of their features into the UML and specification of appropriate
constructs to be defined as a special real-time and embedded systems UML profile.

REFERENCES
[1] G.Booch, J.Rumbaugh and I.Jacobson, The Unified Modeling Language User's Guide,

Addison Wesley, 1999
[2] B.P.Douglass, “Doing Hard Time”, Addison-Wesley, 1999
[3] B.P.Douglas, “The UML For Systems Engineering, I-Logix whitepapers,

www.i-logix.com
[4] N.Hilary, “Bringing the Gap between Requirenments and Design With Use Cases and

Scenarios”. I-Logix whitepapers, www.i-logix.com
[5] C.Kobryn, “UML 2001: A standarization odyssey. Communication of the ACM”, Vol.42,

No. 10, pp. 29-37, 1999
[6] R.J.Muller, “Bazy Danych. Język UML w modelowaniu danych”, Mikom, Luty 2000
[7] “OMG Unified Modeling Language Specification v 1.3”, Object Management Group,

March 2000
[8] OMG, Object Management Group, http://www.omg.org, 2000
[9] R.Rinat, “A Framework-Based Approach to Real-Time Development with UML”,

I-Logix whitepapers, Israel, June 2000

