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Abstract. An architecture (including both hardware and software solutions) for an 
operating system kernel to be employed in hard real time environments is shortly 
described, and its functionality is presented. By considering its application areas, 
which comprise safety critical systems, the need for correctness of such a kernel is 
pointed out. Ways to achieve this property are identified in the context of 
appropriate correctness criteria. It is discussed how proper formal methods are 
selected for verification, and to which particular task each method is applicable. 
Experiences and observations are presented. As one of the latter, the need to apply 
both theoretical (formal) and practical methods is underlined. Therefore, a 
simulator for the kernel was developed, whose functionality is described as well. 
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1.  THE ARCHITECTURE 
The architecture of an operating system kernel considered here  (see [2] for details) can be 
characterised by an asymmetrical dual processor configuration: applications consisting of 
independent, co-operating tasks execute on a general purpose processor (Slave), whereas all 
OS kernel activities are executed on its own dedicated co-processor (Master). The latter acts 
as supervisor of all activities of the entire system, including execution of user tasks, 
scheduling, time management, memory management, interrupt and input/output event 
servicing. 

 Task scheduling is based on the earliest deadline first algorithm. This algorithm can be 
employed, because estimations of the execution times of all tasks are known a priori. The task 
processor always executes the task having the shortest deadline. Unnecessary context 
switches are thus avoided. What is more important, however, is that the execution of system 
calls does not cause task pre-emptions (with the exception of activation or continuation of 
tasks with the shorter deadlines). 

 As shown on Fig. 1, the kernel is divided into three co-operating layers. The task interface to 
the OS Secondary Reaction Layer is organised in the form of system calls, which can be 



 

 

divided into the different groups of tasking operations (activate, terminate, prevent, suspend, 
continue, resume, end), task scheduling (scheduler), task synchronisation (sync_test, 
sync_resume), task communication, and input/output operations.  
 

 
 

Fig. 1. Hardware architecture - functional diagram. 
 

System calls concerning tasks, which are received by the Secondary Reaction Layer, contain 
time (or event) conditions for actions to be performed. The actions are stored in one of the 
system tables, while the calls are passed to the Primary Reaction Layer, which notifies the 
Secondary Reaction Layer on the occurrence of the corresponding trigger events, such as the 
passage of a duration or an external interrupt (Fig. 2). Such events trigger the execution of the 
associated actions. The OS kernel was specified, mainly in the language PEARL, in the form 
of about 28 algorithms. 
 



 

 

 
Fig. 2. System call. 

 
 
2.  THE PROBLEM OF CORRECTNESS 
The kernel was designed to be used in hard real time environments. As it is broadly known, 
control systems for such environments may not crash or behave in a non-predictive manner. 
This concerns the control application itself (the code), the hardware it is running on, the 
hardware it controls, and the operating system as well. To be able to show that the proposed 
kernel can be used for such purposes, an attempt was made to proof - by the use of formal 
methods- that the kernel is reliable and dependable. 
 
There is no universal prescription for the usage of formal methods in practice. The most 
useful advice and guidelines were found in [3]. There, the following phases of formal 
verification were mentioned (Fig. 3): 
 
• Characterisation - that is to achieve a deep understanding of the application (and its 

domain area) to be verified 
• Modeling - selection of a proper mathematical representation(s) (model) most suitable for 

the application, selection of a (formal) specification language and of appropriate tools 
(theorem prover, proof checker, model checker) 

• Specification - decisions concerning the specification strategy (hierarchical levels, 
language, properties), writing the formal specification 

• Analysis - interpretation of the specification prepared, proving the 
key properties etc. 

 
From this short description at least four conclusions, having significance in practice, can be 
drawn: 
1. Detailed (informal) specification of a system is very helpful (mainly in the 

characterisation phase), 
2. Decisions concerning the selection of both a formal (mathematical) model and of tool(s) 

for verification purposes should be made in such a way that they fit to the system to be 
verified as closely as possible, and not the other way around, 

3. System properties to be proven should be named (first, they should be discovered during 
the characterisation phase), 
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4. The selection of the formal method tool is (more or less) a function of the model selected  
and the system properties. 

The formal verification of the kernel properties was based on the just described conclusions,  

 
Fig. 3. Phases of formal verification. 

 
treated as general directions. During the characterisation phase, more than 20 system 
properties were identified, the most fundamental on among them being: 
 
The deadlines of all tasks listed as ready are met (normal situation), or the deadlines cannot 
be met (this fact is known a priori) and an overload signal is raised. 
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As another result of this phase of work, the following observations were made: 
• Proving correctness of the hardware elements of the kernel would require the usage of a 

functional description. 
• In case of the system calls (specified as algorithms) Hoare Logic is needed to show, for 

example, that the algorithms properly manipulate the system data structures. 
• Some system properties will be having the form of theorems and axioms, while the others 

will be expressed as invariants. 
• Hardware and software (of the kernel) cannot be analysed separately. 
The mentioned observations have shown the need to select both a (formal) method and tools 
carefully. The latter should be able to be used both as theorem provers and model checkers.  
 
There are many popular software tools supporting different formal methods. We have finally 
chosen the Prototype Verification System (PVS). It is a general purpose tool based on higher 
order logic. In PVS, the user is required to describe system properties to be proven in a 
specification language similar to a programming language. Thanks to its popularity and 
generality, many formal methods were successfully incorporated into PVS. The experience 
from the current stage of the work (specification of all system properties in PVS) confirms 
the decisions made earlier. 
 
 
3.  THE KERNEL SIMULATOR 
Since the OS kernel was specified as a set of algorithms, there was a need to simulate it. It is 
common practice that teams applying formal methods build simulators to achieve deeper 
understanding of the functionalities to be verified. Our simulator is composed of several co-
operating programs written in Java. The communication model is based on Remote Method 
Invocation (i.e., the client/server model). The kernel itself forms one program (Simulator), in 
which threads were used to model both the task processor and the kernel co-processor 
activities. To both the memory modules and fifos, which should be accessible for different 
kernel components, exclusive access can be ensured thanks to a thread synchronisation 
mechanism built in Java. This program acts as a (RMI) server, providing the other program 
(Monitor) with all the data needed for on-line system analysis. The third program (Control 
Panel) was designed to both enable control over the execution of the OS kernel (which can be 
started, stopped, re-run, executed step by step etc.) and emulation of the external environment. 
The monitor program mentioned above also acts as a (RMI) server for programs performing 
different kinds of visualisation. The basic one is Message Sequence Chart (MSC) Trace of the 
whole system. The program animates the diagram showing the exchange of data between 
elements of the kernel. Other visualisation tools can then be added easily. Each of the 
mentioned visualisation tools can be started or stopped independently of the simulator. 
 
 
4.  CONCLUSIONS 
The usage of formal methods in practice requires planning and decision making. Important 
steps and decisions were shown for the example of a real time operating system kernel. The 
role of the traditional (informal) specification was underlined. The traditional methods (state 
charts, transition graphs, block diagrams etc.) turned out to be very useful, and form a sound 
basis for the formal verification of correctness. Both the PVS specification language and the 
tool PVS as a formal method served our purpose very well. 
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