
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

CORRECTNESS PROOF OF AN OPERATING
SYSTEM KERNEL FOR HARD REAL TIME

COMPUTING

Grzegorz HAMUDA, Wolfgang HALANG

Akademia Górniczo-Hutnicza w Krakowie, al.Mickiewicza 30, 30-074 Kraków,
POLAND, gha@ia.agh.edu.pl

FernUniversität Hagen, Faculty of Electrical Engineering, 58084 Hagen, GERMANY,

wolfgang.halang@fernuni-hagen.de

Abstract. An architecture (including both hardware and software solutions) for an
operating system kernel to be employed in hard real time environments is shortly
described, and its functionality is presented. By considering its application areas,
which comprise safety critical systems, the need for correctness of such a kernel is
pointed out. Ways to achieve this property are identified in the context of
appropriate correctness criteria. It is discussed how proper formal methods are
selected for verification, and to which particular task each method is applicable.
Experiences and observations are presented. As one of the latter, the need to apply
both theoretical (formal) and practical methods is underlined. Therefore, a
simulator for the kernel was developed, whose functionality is described as well.

Key Words. Hard real time computing, operating system kernel, correctness,
formal methods, proofs, simulation

1. THE ARCHITECTURE
The architecture of an operating system kernel considered here (see [2] for details) can be
characterised by an asymmetrical dual processor configuration: applications consisting of
independent, co-operating tasks execute on a general purpose processor (Slave), whereas all
OS kernel activities are executed on its own dedicated co-processor (Master). The latter acts
as supervisor of all activities of the entire system, including execution of user tasks,
scheduling, time management, memory management, interrupt and input/output event
servicing.

 Task scheduling is based on the earliest deadline first algorithm. This algorithm can be
employed, because estimations of the execution times of all tasks are known a priori. The task
processor always executes the task having the shortest deadline. Unnecessary context
switches are thus avoided. What is more important, however, is that the execution of system
calls does not cause task pre-emptions (with the exception of activation or continuation of
tasks with the shorter deadlines).

 As shown on Fig. 1, the kernel is divided into three co-operating layers. The task interface to
the OS Secondary Reaction Layer is organised in the form of system calls, which can be

divided into the different groups of tasking operations (activate, terminate, prevent, suspend,
continue, resume, end), task scheduling (scheduler), task synchronisation (sync_test,
sync_resume), task communication, and input/output operations.

Fig. 1. Hardware architecture - functional diagram.

System calls concerning tasks, which are received by the Secondary Reaction Layer, contain
time (or event) conditions for actions to be performed. The actions are stored in one of the
system tables, while the calls are passed to the Primary Reaction Layer, which notifies the
Secondary Reaction Layer on the occurrence of the corresponding trigger events, such as the
passage of a duration or an external interrupt (Fig. 2). Such events trigger the execution of the
associated actions. The OS kernel was specified, mainly in the language PEARL, in the form
of about 28 algorithms.

Fig. 2. System call.

2. THE PROBLEM OF CORRECTNESS
The kernel was designed to be used in hard real time environments. As it is broadly known,
control systems for such environments may not crash or behave in a non-predictive manner.
This concerns the control application itself (the code), the hardware it is running on, the
hardware it controls, and the operating system as well. To be able to show that the proposed
kernel can be used for such purposes, an attempt was made to proof - by the use of formal
methods- that the kernel is reliable and dependable.

There is no universal prescription for the usage of formal methods in practice. The most
useful advice and guidelines were found in [3]. There, the following phases of formal
verification were mentioned (Fig. 3):

• Characterisation - that is to achieve a deep understanding of the application (and its

domain area) to be verified
• Modeling - selection of a proper mathematical representation(s) (model) most suitable for

the application, selection of a (formal) specification language and of appropriate tools
(theorem prover, proof checker, model checker)

• Specification - decisions concerning the specification strategy (hierarchical levels,
language, properties), writing the formal specification

• Analysis - interpretation of the specification prepared, proving the
key properties etc.

From this short description at least four conclusions, having significance in practice, can be
drawn:
1. Detailed (informal) specification of a system is very helpful (mainly in the

characterisation phase),
2. Decisions concerning the selection of both a formal (mathematical) model and of tool(s)

for verification purposes should be made in such a way that they fit to the system to be
verified as closely as possible, and not the other way around,

3. System properties to be proven should be named (first, they should be discovered during
the characterisation phase),

time / event
operation

system call

TP

(operation and condition coupled)

(decoupling)

(execution)

SRL
PRL

operation

clock

ext.
events

time / event (time schedule preparation)

(execution)

(notification)
(decoupling)

Kernel co-processor

4. The selection of the formal method tool is (more or less) a function of the model selected
and the system properties.

The formal verification of the kernel properties was based on the just described conclusions,

Fig. 3. Phases of formal verification.

treated as general directions. During the characterisation phase, more than 20 system
properties were identified, the most fundamental on among them being:

The deadlines of all tasks listed as ready are met (normal situation), or the deadlines cannot
be met (this fact is known a priori) and an overload signal is raised.

Modeling

Specification

Analysis

Documentation

Maintenance
and Generalization

Characterization
Requirements
specification

description
of the problem

working characterization
of the application

mathematical representation
of the application (model)

specification strategy,
application (model) described
in specification language

proofs

Formal specification and verification

Design
specification

Test
specification

motivation of critical decisions,
explanatory material,traces of the
proof steps, etc

results

parser, typechecker

proof checker,
model checker

Informal specification

As another result of this phase of work, the following observations were made:
• Proving correctness of the hardware elements of the kernel would require the usage of a

functional description.
• In case of the system calls (specified as algorithms) Hoare Logic is needed to show, for

example, that the algorithms properly manipulate the system data structures.
• Some system properties will be having the form of theorems and axioms, while the others

will be expressed as invariants.
• Hardware and software (of the kernel) cannot be analysed separately.
The mentioned observations have shown the need to select both a (formal) method and tools
carefully. The latter should be able to be used both as theorem provers and model checkers.

There are many popular software tools supporting different formal methods. We have finally
chosen the Prototype Verification System (PVS). It is a general purpose tool based on higher
order logic. In PVS, the user is required to describe system properties to be proven in a
specification language similar to a programming language. Thanks to its popularity and
generality, many formal methods were successfully incorporated into PVS. The experience
from the current stage of the work (specification of all system properties in PVS) confirms
the decisions made earlier.

3. THE KERNEL SIMULATOR
Since the OS kernel was specified as a set of algorithms, there was a need to simulate it. It is
common practice that teams applying formal methods build simulators to achieve deeper
understanding of the functionalities to be verified. Our simulator is composed of several co-
operating programs written in Java. The communication model is based on Remote Method
Invocation (i.e., the client/server model). The kernel itself forms one program (Simulator), in
which threads were used to model both the task processor and the kernel co-processor
activities. To both the memory modules and fifos, which should be accessible for different
kernel components, exclusive access can be ensured thanks to a thread synchronisation
mechanism built in Java. This program acts as a (RMI) server, providing the other program
(Monitor) with all the data needed for on-line system analysis. The third program (Control
Panel) was designed to both enable control over the execution of the OS kernel (which can be
started, stopped, re-run, executed step by step etc.) and emulation of the external environment.
The monitor program mentioned above also acts as a (RMI) server for programs performing
different kinds of visualisation. The basic one is Message Sequence Chart (MSC) Trace of the
whole system. The program animates the diagram showing the exchange of data between
elements of the kernel. Other visualisation tools can then be added easily. Each of the
mentioned visualisation tools can be started or stopped independently of the simulator.

4. CONCLUSIONS
The usage of formal methods in practice requires planning and decision making. Important
steps and decisions were shown for the example of a real time operating system kernel. The
role of the traditional (informal) specification was underlined. The traditional methods (state
charts, transition graphs, block diagrams etc.) turned out to be very useful, and form a sound
basis for the formal verification of correctness. Both the PVS specification language and the
tool PVS as a formal method served our purpose very well.

REFERENCES
[1] Myla Archer and Constance Heitmeyer Human-Style Theorem Proving Using PVS

Naval Research Laboratory, Washington, DC 20375
[2] Wolfgang A. Halang and Alexander D. Stoyenko Constructing Predictable Real Time

Systems Boston: Kluwer Academic Publishers 1991
[3] Sandeep Kulkarni, John Rushby, Natarajan Shankar Formal Methods Specification

and Verification Handbook for Software and Computer Systems Volume I: Planning
and Technology Insertion Volume II: A Practitioner's Companion Office of Safety and
Mission Assurance, NASA-GB-002-95, Release 1.0

[4] Sam Owre, Natarajan Shankar, M. K. Srivas A Tutorial on Using PVS for Hardware
Verification SRI International, Computer Science Laboratory, Menlo Park CA 94025
USA

[5] Sam Owre, Natarajan Shankar, J. M. Rushby PVS Language Reference (Version 2.3)
SRI International, Computer Science Laboratory, Menlo Park CA 94025 USA

[6] Sam Owre, Natarajan Shankar, J. M. Rushby PVS Prover Guide (Version 2.3)
SRI International, Computer Science Laboratory, Menlo Park CA 94025 USA

[7] John Rushby Formal methods and digital systems validation for airborne systems,
 NASA Contractor Report 1673, August 1995
[8] C. J. Walter, R. M. Kieckhafer, A. M. Finn MAFT: A multicomputer architecture for

fault-tolerance in real-time control systems, IEEE Real-Time Systems Symposium,
December 1985

