
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

STATE ASSIGNMENT OF
ASYNCHRONOUS PARALLEL AUTOMATA

Ljudmila CHEREMISINOVA

Institute of Engineering Cybernetics of National Academy of Sciences of Belarus,
Surganov str., 6, 220012, Minsk, BELARUS, cld@newman.bas-net.by

Abstract. A problem of race-free state assignment of asynchronous parallel
automata is considered. The goal is to encode partial states of parallel automaton
using minimal number of coding variables and excluding critical races during
automaton operation. Requirements imposing on the partial states codes to
eliminate the influence of races are formulated. An exact algorithm to find a
minimal solution of the problem of race-free state assignment for parallel
automata is suggested. The algorithm provides reducing the computational effort
when searching state encoding.

Key Words. Parallel Automaton, Partial State Assignment, Races in Asynchronous
Automata,

1. INTRODUCTION
The success of the control of a multiple component system depends greatly on the efficiency
of the synchronization among its processing elements. The functions of a control of such a
system are concentrated in one block - logic control device that should provide a proper
synchronization of interaction between the components. In order to represent clearly the
interaction involved in concurrent engineering system it is necessary to describe formally its
functional and structural properties.
As a functional model of a discrete control device to be designed a model of parallel
automaton is proposed [1, 8, 9]. This model can be considered as an extension of a sequential
automaton (finite state machine) to represent parallel processes. The parallel automaton is
more complicated and less studied model in contrast with classical sequential automaton
model. An essential difference from sequential automaton is that a parallel automaton can be
in more than one state simultaneously. That is why the states of a parallel automaton were
called as partial ones [8]. All partial states a parallel automaton is in at some moment form its
global state. In that case any two of these partial states (forming a global state) are called
parallel [8]. Any transition of automaton defines the partial state changes that cause the global
state changes. The most of transitions (and all for asynchronous parallel automaton) are
forced by changes of external signals.
The design of asynchronous automata has been an active area of research for the last 40 years.
There has been a renewed interest in asynchronous design because of their potential for high-

performance and avoidance of clock. However, design of asynchronous automata remains a
cumbersome problem because of difficulties to ensure correct dynamic behavior.
The important step on the way to control device hardware implementation is the state
assignment. It is at the heart of the automaton synthesis problem (especially for its
asynchronous mode of realization). Despite large effort devoted to this problem no
satisfactory solutions have been proposed. A difference of this process for parallel automaton
in comparison with the sequential one is that there are parallel states in the first one (they are
compatible in the sense that the automaton can find itself in them at the same time). That is
why it was suggested in [8] to code partial states with ternary vectors which should be non-
orthogonal for parallel partial states but orthogonal for non-parallel ones. After having coded
partial states it is possible provide them with their codes. In such a way an initial parallel
automaton is transformed from its abstract form into a structural one – a sequent parallel
automaton or a system of Boolean functions that can be directly hardware implemented.
The problem of state assignment becomes harder when asynchronous implementation of a
parallel automaton is considered. The mentioned condition imposed on codes is necessary but
is not enough for that case. The additional condition to be fulfilled is to avoid the influence of
races between memory elements (flip-flops) during hardware operation. One of the ways to
avoid that is to order switches of memory elements so as to eliminate critical races.
A problem of race-free state assignment of asynchronous parallel automata is considered. The
goal is to encode partial states of parallel automaton using minimal number of coding
variables and to avoid the critical races during automaton operation. An exact algorithm to
find a minimal solution of the problem is suggested. The algorithm allows reducing the
computational effort when searching state encoding. The same problem is considered in [5]
where another approach was suggested. The method is based on covering a family of
complete bipartite subgraphs defining constraints of absence of critical races by minimal
number of maximal complete bipartite subgraphs of the state non-parallelism graph.

2. CONSTRAINTS OF ABSENCE OF CRITICAL RACES
The asynchronous sequential automaton behaves as follows. Initially, the automaton is stable
in some state. After the input state changes the outputs change their values as specified in
automaton description. An internal state change may be concurrently with the output change.
After automaton achieving a new stable state it is ready to receive a new input. Throughout
this cycle output and inner variables should be free of glitches. In summary asynchronous
designs differ from those synchronous since state changes may pass through intermediate states.
The sequence of these intermediate states must be preserved in the case of multi-output
change (when intermediate states involve the output change). It can be done with the proper
state assignment. The 1-hot encoding [4] can ensure such a behavior, but it demands too many
coding variables. That is why the methods of race-free state assignment are of interest.
In [6] the constraints to ensure hardware implementation of sequential automaton to be race-
free are given. These constraints allow avoiding interference between automaton transitions
that take place for the same input state. The codes satisfying these constraints ensure race-free
implementation of the automaton. The encoding constraints can be represented in the form of
dichotomies. A dichotomy is a bipartition {S1; S2} of a subset S1 ∪ S2 ⊆ S (S1 ∩ S2 = ∅). In
considered state encoding a binary variable yi covers dichotomy {S1; S2} if yi = 0 for every
state in S1 and yi = 1 for every state in S2 (or vice versa). A pair of transitions taking place at
the same input is called below as competitive transitions. In [6] the following constraints of
critical race-free encoding are given that are induced by competitive transitions of different
types:

1) si → sj, sk → sl (i, j, k, l are pair-wise different) give rise to {si, sj; sk, sl};
2) si → sj, sj → sl (i, j, l are pair-wise different) give rise to {si, sj; sl} and {si; sj, sl};
3) si → sj, sk → sj (i, j, k are pair-wise different) give rise to {si, sj; sk} if the output on the
transition from sk is different than that on the transitions from si and sj (at the input considered).
A parallel automaton is described by a set of generalized transitions (Xkl, Sk) → (Sl, Ykl)
between the subsets of partial states. Such a transition should be understood as follows: if the
global state of the parallel automaton contains all the partial states from Sk and the variables in
the conjunction term Xkl assume values at which Xkl = 1, then as the result of the transition the
automaton goes to a new global state that differs from initial one by that it contains partial
states from Sl instead of those from Sk. More than one generalized transition may take place in
some moment when parallel automaton functions. These transitions define changing different
subsets of parallel partial states. There are no races on such a pair of transitions.
In the case of parallel automaton we have generalized transitions instead of elementary ones.
A generalized transition tkl: Sk → Sl consist of |Sk|⋅⋅⋅⋅|Sl| elementary transitions ski → slj, where ski
∈ Sk is nonparallel to slj ∈ Sl. Let us introduce the set T(tkl, tpq) of pairs of elementary
transitions ski → slj and spi → sqj between pair-wise nonparallel partial states taken from Sk, Sl,
Sp and Sq generated by the pair of competitive transitions tkl: Sk → Sl and tpq: Sp → Sq. For
compatible pair tkl, tpq of generalized transitions we have T(tkl, tpq) = ∅.
In [2] it is shown that in order to avoid the influence of races on competitive generalized
transitions tkl and tpq it is sufficient to avoid it on one pair of elementary transitions from the
set T(tkl, tpq). Thus this statement gives the way of a parallel automaton partial states encoding.
Besides this statement ensures any dichotomy constraint consists of pair-wise nonparallel
partial states that implies the absence of a constraint forcing a coding variable to have
orthogonal values in codes of parallel partial states.
Let distinguish elementary uij, simple up

ni and generalized Un constraints. The first one is a
single dichotomy constraint. The second one is associated with a pair of elementary
transitions and can consist of one (cases 1, 3 of constraints) or two (case 2) elementary
constraints. To avoid critical races on a pair of elementary competitive transitions one has to
satisfy an appropriate simple constraint (one or two elementary ones). A generalized
constraint Un induced by a pair Pn of competitive generalized transitions consists of the
simple constraints induced by pairs of elementary transitions from its generated set T(Pn). To
avoid critical races on Pn it is sufficient to satisfy one of the simple constraints from Un.
Example 1. Let us consider the following parallel automaton in the form Xkl Sk → Sl Ykl:
1. 'x1 s1 → s2⋅s3 y1y2 5. x3 s3 → s6 y4
2. 'x2 x3 s2 → s9 'y2y3 6. x1'x2 s4 → s7 y1'y2
3. ' x3 s9 → s2 y2'y3 7. 'x2 x3 s5 → s8 'y3
4. x2 s2 → s4⋅s5 'y1y3 8. 'x3 s6⋅s7⋅s8 → s1 'y1'y4

The partial states from {s2, s4, s5, s7, s8, s9} and {s3, s6} are pair-wise parallel as well as partial
states from {s4, s7} and {s5, s8}. One can see, for example, that the pair t1, t8 of generalized
transitions is competitive. The generalized constraint U18 induced by that pair consists of 3
simple constraints: up

1 = ({s1, s2; s7} and {s1, s7; s2}), up
2 = ({s1, s2; s8} and {s1, s8; s2}) and .

up
3 = ({s1,s3; s6} and {s1; s3,s6}).

By analogy with the case of sequential automaton [7] the algorithm of critical race-free partial
states assignment of parallel automaton has two steps: 1) generate and compress a set of
encoding constraints; 2) solve these constraints to produce a partial state assignment.

3. GENERATING AND COMPRESSING A SET OF ENCODING CONSTRAINTS
Now an encoding problem formulation is presented that is based on a matrix notation similar
to that used in [7] for sequential automata. A dichotomy constraint {si, sj; sk, sl} can be
presented as a ternary (3-valued) vector called a constraint vector. Its length equals to the
number of partial states, i-th and j-th entries are 1, k-th and l-th entries are 0 (or vice versa),
and the other ones are “-” (don’t care). For example the dichotomy {s1,s7; s2,s9} corresponds
to the vector “1 0 - - - -1 - 0”.
The constraint matrix U is a ternary matrix with as many rows as critical race-free constraints
exist (for a given automaton) and columns as partial states. The matrix U has a complex
structure – it consist of submatrices Ui defining generalized constraints the last ones are in
turn 1 or 2 line sectioned (separating simple constraints).
Now we give some definitions having in view ternary vectors of the same length. A ternary
vector a covers a ternary vector b if, whenever the i-th entry of b is σ ∈ {1,0} i-the entry of a
is σ too. b is an inversion of a (b = 'a) if, whenever the i-th entry of a is 1, 0, “-“ the i-the
entry of b is 0, 1, “-“ respectively. Vectors a and b are orthogonal if for at least an index i the
i-th entries of a and b are orthogonal (1 and 0 or vice versa). An elementary constraint ui
implicates an elementary constraint uj if uj as a ternary vector covers ui or its inversion.
A simple constraint up

n implicates:
– an elementary constraint uj if uj is implicated by one of the elementary constraints from up

n,
– a simple constraint up

m if every umj ∈ up
m is implicated at least by one of unj ∈ up

n,
A generalized constraint Uk implicates:
– a simple constraint up

j (elementary constraint uj) if every up
kj ∈ Uk implicates it,

– a generalized constraint Un if every up
kj ∈ Uk implicates at least one of up

ni ∈ Un.
For computational efficiency of procedure of searching an optimal encoding it is important to
reduce the number of rows of constraint matrix U to the minimal number that represent an
equivalent set of constraints on the encoding. It is trivial that duplicate generalized constraints
can be deleted. Then the number of rows of U can be compressed further by discarding
generalized constraints that are implicated by any other generalized constraint.
Example 2. For considered automaton we can see that generalized constraint ({s1, s7; s2, s9}
or {s1, s8; s2, s9}) induced by the pair t2, t8 of competitive transitions implicates the elementary
constraint {s1; s2, s9} from the simple constraint ({s1, s2; s9} and {s1; s2, s9}) induced by the
pair t1, t2 of competitive transitions. Thus we have the following irredundant set of
generalized constraints Uk (in the form of dichotomies) for this automaton:
1. {s1,s2; s9}, 7. {s1,s7; s2,s9} or {s1,s8; s2,s9},
2. ({s1,s2; s4} and {s1; s2, s4}) or {s1; s2, s5}, 8. {s1,s7; s2,s4} or {s1,s8; s2,s5},
3. {s1,s2; s5,s8}, 9. {s1; s4,s7},
4. ({s1,s2; s7} and {s1, s7; s2}) or {s1, s8; s2}, 10. ({s1,s3; s6} and {s1; s3,s6}),
5. {s2,s9; s4,s7}, 11. {s4; s7},
6. {s2,s4; s9} or ({s2, s5; s9} and {s2, s9; s5}), 12. {s5; s8}.

The last two constraints U11 and U12 are introduced since nonparallel partial states should be
encoded with orthogonal codes (but constraint U8 does not implicates neither U11 nor U12).

4. FINDING ENCODING OF PARTIAL STATES
One can see that the matrix U is an encoding matrix V, but the number of coding variables
(equaled to the number of rows) is too big. The encoding matrix V is grown from an initial
seed constraint matrix U by its compressing at the expense of combining some constraints and
substituting them for one constraint implicating them.

Now we give some definitions and derive some useful properties from them. A constraint u is
called an implicant of a set of rows of constrained matrix U if it implicates each of them taken
separately. A set Uj ∈ U is considered as compatible if there exists its implicant having no
orthogonal entries associated with parallel states. For example the single u11 ∈ U1 is
compatible with u31 ∈ U3 (its implicants are {s1,s2; s5,s8,s9}, {s1,s2; s4,s5,s8,s9}, {s1,s2;
s4,s5,s7,s8,s9}), but not compatible with u11 ∈ up

1 ∈ U10.
We can simply find whether two rows vk ∈ V and ul ∈ U (or both from U) are compatible
when using the notion of a boundary vector suggested in [3]. The boundary vector for any row
uk ∈ U (or vk ∈ V) is - 4-valued vector that gives an upper bound of its grows (extension) i.e.
it determines the potential of verifying the components of uk. In [3] the operations over 3- and
4-valued vectors are given that help simply to find implicants.
When concatenating two rows vk and ul (constructing their implicant) we do minimal
extension of vk to implicate ul. In this way any i-th entry of the result of concatenation is equal
to that of vk and ul (or 'ul). vk ∈ V is an implicant for generalized constraint Ul ∈ U if it is
implicant for some up

li ∈ Ul. An implicant of a subset U’ of generalized constraints is
maximal if it is incompatible with all those others (it cannot implicate any more generalized
constraints besides those from U’). For example the implicant {s1,s2; s4,s5,s7,s8,s9} is maximal,
but {s1,s2; s5,s8,s9} is not.
An exact algorithm to find a minimum solution of the problem of race-free state assignment is
based on building a set C of all maximal implicants for constraint matrix U and then searching
a subset of V ⊆ C of minimal cardinality such that for any generalized constraint Ui ∈ U there
exists an implicant in V implicating it. The second part of the problem is reduced to covering
problem of Boolean matrix [7], as in the case with Quine’s table.

4.1. Search of maximal implicants
We use branch and bound algorithm to build all maximal implicants. Constraints are
processed one by one in predefined order choosing (at each step) one compatible with the
current state of the implicant formed. If we exhaust such constraints we would start
backtracking to a previous step to modify the solution and repeat searching.
The computational efforts can be reduced using a previously generated compatibility relation
on the rows from U. Taking into account that any maximal implicant may satisfy only one of
the simple constraints from each generalized constraint they all can be regarded as pair-wise
incompatible. At each step of the algorithm it is enough to consider as candidates for
concatenating only those rows compatible with all concatenated in the current implicant.
Further search reduction can be received by sorting the constraints according to the degree of
their incompatibility: the greater it is the less is branching.
For the automaton considered there exist 17 maximal implicants.

4.2. Covering problem statement
Once a set C of maximal implicants is found the task is to extract from it a subset that satisfy all
generalized constraints Uk ⊂ U. Every Uk = {uk1

p, uk2
p, …, ukn

p} is satisfied as OR (though one of
uki

p should be satisfied) and uki
p consist of one or two uij that are satisfied as AND (both ui1 and ui2

should be satisfied). These statements can be expressed logically (as it is suggested in [5]) by the
formulas: Uk = uk1

p ∨ uk2
p ∨…∨ ukn

p and uki
p = ui1⋅⋅⋅⋅ui2. Substituting expressions uki

p into Uk and
using the distributive low one can receive conjunctive normal form Uk = Uk

1⋅⋅⋅⋅Uk
2⋅⋅⋅⋅…⋅⋅⋅⋅Uk

m. Any Uk
i

is a union of separate elementary constraints. For example generalized constraint U2 (from
example 2) is represented as ({s1,s2; s4} or {s1; s2, s5})⋅⋅⋅⋅({s1; s2, s4} or {s1; s2, s5}).

Now the problem is stated in the form of Quine’s table Q. Its rows correspond to implicants Ci
∈ C and columns to conjunctive members Uk

i for all Uk. An entry (ij) of Q is 1 (marked) if Ci
implicates j-th conjunctive member. The task is to find the minimal number of rows covering
all columns (every column should have 1 at least in one position corresponding to rows
chosen) [7]. The cover presenting encoding for automaton considered (examples 1,2) contains
5 rows. So we find 5 components codes of partial states that provide the absence of critical
races when the automaton operates:

V =



















−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−

00111
011

0000001
01001
1000011

It should be noted that some entries of matrix equal to 0 or 1 can be substituted with value
don’t care because of usage of maximal implicants.

5. CONCLUSION
Unfortunately the problems considered are computationally hard ones. The growth of the
computation time as the size of the problem increases is a practical limitation of the method
suggested to computer-aided design systems. It can be used for solving encoding problems of
moderate size obtaining after decomposing the whole big problem. Besides the method can be
useful for estimation of efficiency of heuristic encoding techniques [3].

REFERENCES
[1] M.Adamski, M.Wegrzyn, “Field programmable implementation of current state

machine”, Proc.of the Third Int. Conf.on Computer-Aided Design of Discrete Devises
(CAD DD’99), Minsk, Institute of Engineering Cybernetics of the of Belarus Academy of
Sciences, Vol. 1, pp. 4-12, 1999

[2] L.D.Cheremisinova, “Implementation of parallel digital control algorithms by
asynchronous automata”, Automatic Control and Computer Sciences, Vol. 19, No. 2, pp.
78 – 83, 1985

[3] L.D.Cheremisinova, “Race-free state assignment of a parallel asynchronous automaton”,
Upravlyajushchie sistemy i mashiny, No 2, pp. 51-54, 1987 (in Russian)

[4] L.D.Cheremisinova, “PLC Implementation of concurrent control algorithms”, Proc.of the
Int. Workshop “Discrete Optimization Methods in Scheduling and Computer-Aided
Design”, Minsk, Republic of Belarus, Sept. 5-6, pp. 190-196, 2000

[5] Yu.V.Pottosin, “State assignment of asynchronous parallel automata with codes of
minimum length”, Proc.of the Int. Workshop “Discrete Optimization Methods in
Scheduling and Computer-Aided Design”, Minsk, Republic of Belarus, Sept. 5-6, pp.
202-206, 2000

[6] S.H.Unger, Asynchronous sequential switching circuits, Wiley-Interscience, New York,
1969

[7] A.D.Zakrevskij, Logical synthesis of cascade networks, Nauka, Moscow, 1981 (in Russian)
[8] A.D.Zakrevskij, “Parallel automaton”, Doklady AN BSSR, Vol. 28, No. 8, pp. 717 – 719,

1984 (in Russian)
[9] A.D.Zakrevskij, Parallel algorithms for logical control, Minsk, Institute of Engineering

Cybernetics of NAS of Belarus, 1999. (in Russian)

