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Abstract. A problem of race-free state assignment of asynchronous parallel 
automata is considered. The goal is to encode partial states of parallel automaton 
using minimal number of coding variables and excluding critical races during 
automaton operation. Requirements imposing on the partial states codes to 
eliminate the influence of races are formulated. An exact algorithm to find a 
minimal solution of the problem of race-free state assignment for parallel 
automata is suggested. The algorithm provides reducing the computational effort 
when searching state encoding. 
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1. INTRODUCTION 
The success of the control of a multiple component system depends greatly on the efficiency 
of the synchronization among its processing elements. The functions of a control of such a 
system are concentrated in one block - logic control device that should provide a proper 
synchronization of interaction between the components. In order to represent clearly the 
interaction involved in concurrent engineering system it is necessary to describe formally its 
functional and structural properties. 
As a functional model of a discrete control device to be designed a model of parallel 
automaton is proposed [1, 8, 9]. This model can be considered as an extension of a sequential 
automaton (finite state machine) to represent parallel processes. The parallel automaton is 
more complicated and less studied model in contrast with classical sequential automaton 
model. An essential difference from sequential automaton is that a parallel automaton can be 
in more than one state simultaneously. That is why the states of a parallel automaton were 
called as partial ones [8]. All partial states a parallel automaton is in at some moment form its 
global state. In that case any two of these partial states (forming a global state) are called 
parallel [8]. Any transition of automaton defines the partial state changes that cause the global 
state changes. The most of transitions (and all for asynchronous parallel automaton) are 
forced by changes of external signals. 
The design of asynchronous automata has been an active area of research for the last 40 years. 
There has been a renewed interest in asynchronous design because of their potential for high-



performance and avoidance of clock. However, design of asynchronous automata remains a 
cumbersome problem because of difficulties to ensure correct dynamic behavior. 
The important step on the way to control device hardware implementation is the state 
assignment. It is at the heart of the automaton synthesis problem (especially for its 
asynchronous mode of realization). Despite large effort devoted to this problem no 
satisfactory solutions have been proposed. A difference of this process for parallel automaton 
in comparison with the sequential one is that there are parallel states in the first one (they are 
compatible in the sense that the automaton can find itself in them at the same time). That is 
why it was suggested in [8] to code partial states with ternary vectors which should be non-
orthogonal for parallel partial states but orthogonal for non-parallel ones. After having coded 
partial states it is possible provide them with their codes. In such a way an initial parallel 
automaton is transformed from its abstract form into a structural one – a sequent parallel 
automaton or a system of Boolean functions that can be directly hardware implemented. 
The problem of state assignment becomes harder when asynchronous implementation of a 
parallel automaton is considered. The mentioned condition imposed on codes is necessary but 
is not enough for that case. The additional condition to be fulfilled is to avoid the influence of 
races between memory elements (flip-flops) during hardware operation. One of the ways to 
avoid that is to order switches of memory elements so as to eliminate critical races. 
A problem of race-free state assignment of asynchronous parallel automata is considered. The 
goal is to encode partial states of parallel automaton using minimal number of coding 
variables and to avoid the critical races during automaton operation. An exact algorithm to 
find a minimal solution of the problem is suggested. The algorithm allows reducing the 
computational effort when searching state encoding. The same problem is considered in [5] 
where another approach was suggested. The method is based on covering a family of 
complete bipartite subgraphs defining constraints of absence of critical races by minimal 
number of maximal complete bipartite subgraphs of the state non-parallelism graph. 

2. CONSTRAINTS OF ABSENCE OF CRITICAL RACES 
The asynchronous sequential automaton behaves as follows. Initially, the automaton is stable 
in some state. After the input state changes the outputs change their values as specified in 
automaton description. An internal state change may be concurrently with the output change. 
After automaton achieving a new stable state it is ready to receive a new input. Throughout 
this cycle output and inner variables should be free of glitches. In summary asynchronous 
designs differ from those synchronous since state changes may pass through intermediate states. 
The sequence of these intermediate states must be preserved in the case of multi-output 
change (when intermediate states involve the output change). It can be done with the proper 
state assignment. The 1-hot encoding [4] can ensure such a behavior, but it demands too many 
coding variables. That is why the methods of race-free state assignment are of interest. 
In [6] the constraints to ensure hardware implementation of sequential automaton to be race-
free are given. These constraints allow avoiding interference between automaton transitions 
that take place for the same input state. The codes satisfying these constraints ensure race-free 
implementation of the automaton. The encoding constraints can be represented in the form of 
dichotomies. A dichotomy is a bipartition {S1; S2} of a subset S1 ∪ S2 ⊆ S (S1 ∩ S2 = ∅). In 
considered state encoding a binary variable yi covers dichotomy {S1; S2} if yi = 0 for every 
state in S1 and yi = 1 for every state in S2 (or vice versa). A pair of transitions taking place at 
the same input is called below as competitive transitions. In [6] the following constraints of 
critical race-free encoding are given that are induced by competitive transitions of different 
types: 



1) si → sj, sk → sl (i, j, k, l are pair-wise different) give rise to {si, sj; sk, sl}; 
2) si → sj, sj → sl (i, j, l are pair-wise different) give rise to {si, sj; sl} and {si; sj, sl}; 
3) si → sj, sk → sj (i, j, k are pair-wise different) give rise to {si, sj; sk} if the output on the 
transition from sk is different than that on the transitions from si and sj (at the input considered). 
A parallel automaton is described by a set of generalized transitions (Xkl, Sk) → (Sl, Ykl) 
between the subsets of partial states. Such a transition should be understood as follows: if the 
global state of the parallel automaton contains all the partial states from Sk and the variables in 
the conjunction term Xkl assume values at which Xkl = 1, then as the result of the transition the 
automaton goes to a new global state that differs from initial one by that it contains partial 
states from Sl instead of those from Sk. More than one generalized transition may take place in 
some moment when parallel automaton functions. These transitions define changing different 
subsets of parallel partial states. There are no races on such a pair of transitions. 
In the case of parallel automaton we have generalized transitions instead of elementary ones. 
A generalized transition tkl: Sk → Sl consist of |Sk|⋅⋅⋅⋅|Sl| elementary transitions ski → slj, where ski 
∈ Sk is nonparallel to slj ∈ Sl. Let us introduce the set T(tkl, tpq) of pairs of elementary 
transitions ski → slj and spi → sqj between pair-wise nonparallel partial states taken from Sk, Sl, 
Sp and Sq generated by the pair of competitive transitions tkl: Sk → Sl and tpq: Sp → Sq. For 
compatible pair tkl, tpq of generalized transitions we have T(tkl, tpq) = ∅. 
In [2] it is shown that in order to avoid the influence of races on competitive generalized 
transitions tkl and tpq it is sufficient to avoid it on one pair of elementary transitions from the 
set T(tkl, tpq). Thus this statement gives the way of a parallel automaton partial states encoding. 
Besides this statement ensures any dichotomy constraint consists of pair-wise nonparallel 
partial states that implies the absence of a constraint forcing a coding variable to have 
orthogonal values in codes of parallel partial states. 
Let distinguish elementary uij, simple up

ni and generalized Un constraints. The first one is a 
single dichotomy constraint. The second one is associated with a pair of elementary 
transitions and can consist of one (cases 1, 3 of constraints) or two (case 2) elementary 
constraints. To avoid critical races on a pair of elementary competitive transitions one has to 
satisfy an appropriate simple constraint (one or two elementary ones). A generalized 
constraint Un induced by a pair Pn of competitive generalized transitions consists of the 
simple constraints induced by pairs of elementary transitions from its generated set T(Pn). To 
avoid critical races on Pn it is sufficient to satisfy one of the simple constraints from Un. 
Example 1. Let us consider the following parallel automaton in the form Xkl  Sk → Sl  Ykl: 
1.  'x1         s1 → s2⋅s3     y1y2  5.  x3          s3 → s6          y4 
2.  'x2 x3     s2 → s9       'y2y3  6.  x1'x2      s4 → s7        y1'y2 
3.  ' x3         s9 → s2         y2'y3  7.  'x2 x3      s5 → s8         'y3 
4.  x2          s2 → s4⋅s5     'y1y3  8.  'x3  s6⋅s7⋅s8 → s1     'y1'y4 

The partial states from {s2, s4, s5, s7, s8, s9} and {s3, s6} are pair-wise parallel as well as partial 
states from {s4, s7} and {s5, s8}. One can see, for example, that the pair t1, t8 of generalized 
transitions is competitive. The generalized constraint U18 induced by that pair consists of 3 
simple constraints: up

1 = ({s1, s2; s7} and {s1, s7; s2}), up
2 = ({s1, s2; s8} and {s1, s8; s2}) and . 

up
3 = ({s1,s3; s6} and {s1; s3,s6}). 

By analogy with the case of sequential automaton [7] the algorithm of critical race-free partial 
states assignment of parallel automaton has two steps: 1) generate and compress a set of 
encoding constraints; 2) solve these constraints to produce a partial state assignment. 



3. GENERATING AND COMPRESSING A SET OF ENCODING CONSTRAINTS 
Now an encoding problem formulation is presented that is based on a matrix notation similar 
to that used in [7] for sequential automata. A dichotomy constraint {si, sj; sk, sl} can be 
presented as a ternary (3-valued) vector called a constraint vector. Its length equals to the 
number of partial states, i-th and j-th entries are 1, k-th and l-th entries are 0 (or vice versa), 
and the other ones are “-” (don’t care). For example the dichotomy {s1,s7; s2,s9} corresponds 
to the vector “1 0 - - - -1 - 0”. 
The constraint matrix U is a ternary matrix with as many rows as critical race-free constraints 
exist (for a given automaton) and columns as partial states. The matrix U has a complex 
structure – it consist of submatrices Ui defining generalized constraints the last ones are in 
turn 1 or 2 line sectioned (separating simple constraints). 
Now we give some definitions having in view ternary vectors of the same length. A ternary 
vector a covers a ternary vector b if, whenever the i-th entry of b is σ ∈ {1,0} i-the entry of a 
is σ too. b is an inversion of a (b = 'a) if, whenever the i-th entry of a is 1, 0, “-“ the i-the 
entry of b is 0, 1, “-“ respectively. Vectors a and b are orthogonal if for at least an index i the 
i-th entries of a and b are orthogonal (1 and 0 or vice versa). An elementary constraint ui 
implicates an elementary constraint uj if uj as a ternary vector covers ui or its inversion. 
A simple constraint up

n implicates: 
– an elementary constraint uj if uj is implicated by one of the elementary constraints from up

n, 
– a simple constraint up

m if every umj ∈ up
m is implicated at least by one of unj ∈ up

n, 
A generalized constraint Uk implicates: 
– a simple constraint up

j (elementary constraint uj) if every up
kj ∈ Uk implicates it, 

– a generalized constraint Un if every up
kj ∈ Uk implicates at least one of up

ni ∈ Un. 
For computational efficiency of procedure of searching an optimal encoding it is important to 
reduce the number of rows of constraint matrix U to the minimal number that represent an 
equivalent set of constraints on the encoding. It is trivial that duplicate generalized constraints 
can be deleted. Then the number of rows of U can be compressed further by discarding 
generalized constraints that are implicated by any other generalized constraint. 
Example 2. For considered automaton we can see that generalized constraint ({s1, s7; s2, s9} 
or {s1, s8; s2, s9}) induced by the pair t2, t8 of competitive transitions implicates the elementary 
constraint {s1; s2, s9} from the simple constraint ({s1, s2; s9} and {s1; s2, s9}) induced by the 
pair t1, t2 of competitive transitions. Thus we have the following irredundant set of 
generalized constraints Uk (in the form of dichotomies) for this automaton: 
1. {s1,s2; s9},      7. {s1,s7; s2,s9} or {s1,s8; s2,s9}, 
2. ({s1,s2; s4} and {s1; s2, s4}) or {s1; s2, s5},  8. {s1,s7; s2,s4} or {s1,s8; s2,s5}, 
3. {s1,s2; s5,s8},     9. {s1; s4,s7}, 
4. ({s1,s2; s7} and {s1, s7; s2}) or {s1, s8; s2},  10. ({s1,s3; s6} and {s1; s3,s6}), 
5. {s2,s9; s4,s7},     11. {s4; s7}, 
6. {s2,s4; s9} or ({s2, s5; s9} and {s2, s9; s5}),  12. {s5; s8}. 

The last two constraints U11 and U12 are introduced since nonparallel partial states should be 
encoded with orthogonal codes (but constraint U8 does not implicates neither U11 nor U12). 

4. FINDING ENCODING OF PARTIAL STATES 
One can see that the matrix U is an encoding matrix V, but the number of coding variables 
(equaled to the number of rows) is too big. The encoding matrix V is grown from an initial 
seed constraint matrix U by its compressing at the expense of combining some constraints and 
substituting them for one constraint implicating them. 



Now we give some definitions and derive some useful properties from them. A constraint u is 
called an implicant of a set of rows of constrained matrix U if it implicates each of them taken 
separately. A set Uj ∈ U is considered as compatible if there exists its implicant having no 
orthogonal entries associated with parallel states. For example the single u11 ∈ U1 is 
compatible with u31 ∈ U3 (its implicants are {s1,s2; s5,s8,s9}, {s1,s2; s4,s5,s8,s9}, {s1,s2; 
s4,s5,s7,s8,s9}), but not compatible with u11 ∈ up

1 ∈ U10. 
We can simply find whether two rows vk ∈ V and ul ∈ U (or both from U) are compatible 
when using the notion of a boundary vector suggested in [3]. The boundary vector for any row 
uk ∈ U (or vk ∈ V) is - 4-valued vector that gives an upper bound of its grows (extension) i.e. 
it determines the potential of verifying the components of uk. In [3] the operations over 3- and 
4-valued vectors are given that help simply to find implicants. 
When concatenating two rows vk and ul (constructing their implicant) we do minimal 
extension of vk to implicate ul. In this way any i-th entry of the result of concatenation is equal 
to that of vk and ul (or 'ul). vk ∈ V is an implicant for generalized constraint Ul ∈ U if it is 
implicant for some up

li ∈ Ul. An implicant of a subset U’ of generalized constraints is 
maximal if it is incompatible with all those others (it cannot implicate any more generalized 
constraints besides those from U’). For example the implicant {s1,s2; s4,s5,s7,s8,s9} is maximal, 
but {s1,s2; s5,s8,s9} is not. 
An exact algorithm to find a minimum solution of the problem of race-free state assignment is 
based on building a set C of all maximal implicants for constraint matrix U and then searching 
a subset of V ⊆ C of minimal cardinality such that for any generalized constraint Ui ∈ U there 
exists an implicant in V implicating it. The second part of the problem is reduced to covering 
problem of Boolean matrix [7], as in the case with Quine’s table. 

4.1. Search of maximal implicants 
We use branch and bound algorithm to build all maximal implicants. Constraints are 
processed one by one in predefined order choosing (at each step) one compatible with the 
current state of the implicant formed. If we exhaust such constraints we would start 
backtracking to a previous step to modify the solution and repeat searching. 
The computational efforts can be reduced using a previously generated compatibility relation 
on the rows from U. Taking into account that any maximal implicant may satisfy only one of 
the simple constraints from each generalized constraint they all can be regarded as pair-wise 
incompatible. At each step of the algorithm it is enough to consider as candidates for 
concatenating only those rows compatible with all concatenated in the current implicant. 
Further search reduction can be received by sorting the constraints according to the degree of 
their incompatibility: the greater it is the less is branching. 
For the automaton considered there exist 17 maximal implicants. 

4.2. Covering problem statement 
Once a set C of maximal implicants is found the task is to extract from it a subset that satisfy all 
generalized constraints Uk ⊂ U. Every Uk = {uk1

p, uk2
p, …, ukn

p} is satisfied as OR (though one of 
uki

p should be satisfied) and uki
p consist of one or two uij that are satisfied as AND (both ui1 and ui2 

should be satisfied). These statements can be expressed logically (as it is suggested in [5]) by the 
formulas: Uk = uk1

p ∨ uk2
p ∨…∨ ukn

p and uki
p = ui1⋅⋅⋅⋅ui2. Substituting expressions uki

p into Uk and 
using the distributive low one can receive conjunctive normal form Uk = Uk

1⋅⋅⋅⋅Uk
2⋅⋅⋅⋅…⋅⋅⋅⋅Uk

m. Any Uk
i 

is a union of separate elementary constraints. For example generalized constraint U2 (from 
example 2) is represented as ({s1,s2; s4} or {s1; s2, s5})⋅⋅⋅⋅({s1; s2, s4} or {s1; s2, s5}). 



Now the problem is stated in the form of Quine’s table Q. Its rows correspond to implicants Ci 
∈ C and columns to conjunctive members Uk

i for all Uk. An entry (ij) of Q is 1 (marked) if Ci 
implicates j-th conjunctive member. The task is to find the minimal number of rows covering 
all columns (every column should have 1 at least in one position corresponding to rows 
chosen) [7]. The cover presenting encoding for automaton considered (examples 1,2) contains 
5 rows. So we find 5 components codes of partial states that provide the absence of critical 
races when the automaton operates: 

V = 



















−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−

−−−−−−−−−−−−−−−−
−−−−−−−−

00111
011

0000001
01001
1000011

 

It should be noted that some entries of matrix equal to 0 or 1 can be substituted with value 
don’t care because of usage of maximal implicants. 

5. CONCLUSION 
Unfortunately the problems considered are computationally hard ones. The growth of the 
computation time as the size of the problem increases is a practical limitation of the method 
suggested to computer-aided design systems. It can be used for solving encoding problems of 
moderate size obtaining after decomposing the whole big problem. Besides the method can be 
useful for estimation of efficiency of heuristic encoding techniques [3]. 
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