
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

IMPLEMENTATION OF THE FSM INTO
FPGA

Hana KUBÁTOVÁ

Department of Computer Science and Engineering, Czech Technical University in Prague,
Karlovo nám. 13, 121 35 Prague 2, Czech Republic, Phone: +42 2 2435 7281

Fax: +42 2 2492 3325, e-mail: kubatova@fel.cvut.cz

Abstract. This paper deals with the possibility of description and
decomposition of the finite state machine (FSM). The aim is to obtain better
placement of a designed FSM to the selected FPGA. It compares several methods
of coding of the FSM internal states with respect to the space (number of the CLB
blocks) and time characteristics. It evaluates the FSM benchmarks and looks for
such qualitative properties to choose the best method for coding before performing
all FOUNDATION algorithms because this process is time consuming. The new
method for coding of the internal FSM states is presented. All results are
documented by experiments.

Key Words. Finite state machine (FSM), Hardware Description Language
(VHDL), state transition graph (STG), code method, decomposition, benchmark

1. INTRODUCTION
Most research reports and other materials devoted to searching of the “optimal” coding of the
internal states of FSM are based on minimal number of internal states and sometimes also on
minimal number of used flip-flops in their hardware realization. The only method how to get
the really optimal results is testing of all possibilities, [1]. But sometimes “wasting” of the
internal states or flip-flops is better solution due to speed of the designed circuit. The most
coding methods are not based on recently used structures, like different types of FPGA or
CPLD. Therefore we try to compare several types of sequential circuit benchmarks to search
the relation between the type of this circuit (number of the internal states, inputs, outputs,
cycles, branching) and the coding method with respect to their implementation by XILINX
FPGA.

We have worked with the CAD system XILINX FOUNDATION v2.1i during all our
experiments. We have used the benchmarks from the Internet in KISS2 format, some coding
algorithms from JEDI program and system SIS 1.2 [7]. First of all we have classified the FSM
benchmarks to know the quantitative characteristics of them: number of internal states, inputs,
outputs, transitions (i.e. the number of arcs in the state transition graph - STG), maximal
number of input arcs, maximal number of output arcs to and from STG nodes, etc. We have
compared eight coding methods: “one-hot”, binary, Johnson and Gray that are implemented in
FOUNDATION CAD system; we have implemented Fan-in and Fan-out oriented algorithms

and the algorithm “FAN” connecting Fan-in and Fan-out ones [1], [5] and our original
method called “own” that will be presented in this paper. The second group of our
experiments has been directed to the decompositions of the FSM. The final results (number of
the CLB blocks and maximal frequency) were obtained for concrete FPGA implementation
(Spartan XCS05-PC84).

2. METHODS

2.1. Coding methods
“One hot” method uses the same number of bits as the number of internal states - the great
number of internal variables is the main disadvantage of this method. The states, that have the
same next state for a given input, should be given adjacent assignments ("Fan-out oriented").
The states, that are the next states of the same state, should be given adjacent assignments
("Fan-in oriented"). The states, which have the same output for a given input should be given
adjacent assignments (this will help to cover the 1's in the output Karnaugh-maps; "output
oriented"). Very popular and frequently used method is the binary code, that uses the
minimum number of internal variables, and the Gray code with the same characteristics and
adjacent codes for a sequence of states. First partial results based on these 7 methods and
benchmarks characteristics were presented in [3]. We have found out, that binary coding is
better than “one hot” coding for those FSM, which fulfil the following condition: STG that
describes the FSM should be complete or nearly complete. If the ratio of average output
degree of a node to the number of states is greater than 0.7, than it is better to use the binary
coding. On the contrary, when this ratio is low, “one hot” coding is better. This qualitative
characteristic property of the FSM benchmarks is defined as:

AN = AverageOutEdges/(NumberOf States - 1) (1)

The value AN = 0.7 were verified on benchmarks and on our specially generated testing FSM
[4].

2.2. Method “own”
Our original method combines the “one-hot” and binary coding methods. It is based on the
partially FSM internal state decomposition. The global algorithm could be described as
follows:

a) All FSM internal states Qi are placed to the set S0 – not yet classified states

b) From all S0 elements select the state Qi with the most number of transitions to the another
disjoint states from S0. This state Qi is taken away from S0 and becomes the first member
of the new set Sgroup

c) Construct the set of neighbour internal states of all members of Sgroup – Sneighbour. Compute
the score [4], that expresses the placement suitability for a state Qj into Sgroup, for all states
from Sneighbour. The state with the highest score add to Sgroup . The score is a sum of:

� The number of the transitions from Qj to all states from Sgroup multiplied by the
constant 10;

� The number of such states from Sgroup the transition exists from Qj into those ones
multiplied by the constant 20;

� The number of the transitions from Qj to all neighbour internal states from Sgroup (i.e.
to all states from Sneighbour) multiplied by the constant 3;

� The number of such states from Sneighbour the transition exists from Qj to those ones
multiplied by the constant 6;

� The number of the transitions from all internal states from Sgroup to Qj multiplied by
the constant 10;

� The number of such states from Sgroup the transition exists from those ones into Qj
multiplied by the constant 20;

� The number of the transitions from all neighbour states of Sgroup (placed in Sneighbour) to
Qj multiplied by the constant 3;

� The number of the neighbour states in Sneighbour the transition exists from those ones to
Qj multiplied by the constant 6;

d) Compute the AN (1) ratio for Sgroup. When this ratio is grater then the “border ratio” (the
input parameter of this algorithm, according our experiments usually 0.7) the state Qj
becomes the real member of Sgroup. Now continue by step c). When the ratio is less then
the “border ratio”, state Qj is discarded from the Sgroup and this set is closed. Now continue
by step b).

e) When all internal states are placed into some set Si and S0 is empty, the internal state code
can be constructed. It is connected from the binary part (serial number of the state in its
set in binary notation) and the one-hot part (serial number of a set in one-hot notation).
The number of binary part bits is equal to b where 2b greater or equal to the maximum
number of states in sets. The number of one-hot part bits is equal to the number of sets Si.

Example (lion benchmark [7], border ratio 0.7):

-0/0
11/0

01/- 0-/1

10/100/1

11/1

01/1

1-/1
0-/1

11/0

st0 st1

st2st3

Obr.1. STG of the lion benchmark

a) All FSM internal states Qj are placed to the set S0 – not yet classified states

S0 = {st0, st1, st2, st3}
b) For all S0 elements compute the number of transitions to the another disjoint states from S0

(st0…1, st1…2, st2…2, st3…1). Choose the state with the highest value and construct the
new set S1:

S0 = {st0, st2, st3}, S1 = {st1}
c) Construct the set of neighbour internal states of all members of S1 – Sneighbour:

S0 = {st0, st2, st3}, S1 = {st1}, Sneighbour = {st0, st2}

Compute the score for all states from Sneighbour:

st0score = 1.10+1.20+2.3+1.6+1.10+1.20+2.3+1.6 = 84
st2score = 1.10+1.20+1.3+1.6+1.10+1.20+1.3+1.6 = 78

Choose the state with the highest score and add it to S1:

S0 = {st2, st3}, S1 = {st0, st1}, Sneighbour = {st2}

d) Compute the AN (1) ratio for the elements from S1: AN = 1.0. AN is grater then 0.7,
therefore the state Qj becomes the real member of S1. Now continue by step c).

c) Try to add the state st2 into S1 and compute the AN. Because AN = 0.66 state st2 is
discarded from the S1 and this set is closed. Now continue by step b).

At the end all internal states are placed into 2 groups:

S1 = {st0, st1}, S2 = {st2, st3}
Now internal state code is connected from the one bit binary part and the two bits one-hot
parts:

st0 … 0/01

st1 … 1/01

st2 … 0/10

st3 … 1/10

3. EXPERIMENTS

The conversion program between KISS2 format and VHDL was necessary to build - we have
implemented the converter K2V_DOS (in C++ by translator GCC for DOS OS) [3], [4]. The
K2V_DOS program allows an acquisition of information about the FSM like e.g.: node
degree, number of states, number of transitions, etc. The FSM in the VHDL description, that
was created by the K2V_DOS program, can be described by different ways (with different
results):
- one big process sensitive to the clock signal and to the input signals (one case statement is

used in this process - it selects active state and in each branch of the case there are if
statements, which define next states and outputs - this is the same method, like the
XILINX FOUNDATION uses for conversion between STG and VHDL [8]);

- three processes (next-state-proc for implementation of the next-state function, state-dff-
proc for asynchronous reset and using D flip-flops and output-proc for the FSM output
function realization). To overcome the XILINX FOUNDATION optimization for the “one-
hot” coding method we have used direct code assignment, too.

The K2V_DOS program system can generate our special testing FSM (for more precise setting
of the “border ratio” AN). We have generated the Moore type FSM with the determined
number of internal states and mainly the determined number of the transitions from the
internal states. Our FSM has the STG with the strictly defined and the same number of
transitions from all states. The resulting format is the KISS2 format – e.g. 4.kiss testing FSM
has the STG with four edges from every internal state (node). Both the first and also the next
state connections are generated randomly to overcome the XILINX FOUNDATION
optimization for the counter design.
The K2V_DOS program can generate different FSM internal state coding by methods binary,
Gray, Johnson, one-hot, Fan-in, Fan-out and FAN and “own”. All benchmarks were

processed by DECOMP program to generate all possible types of decompositions (in KISS2
format due to using the same batch for FPGA implementation).

4. RESULTS
We have performed about 1000 experiments with different types of coding and decomposition
methods for 50 benchmarks. We have obtained the great amount of the results processed to
the visual graphs. One of them expressing the comparison of the “one-hot”, binary and “own
0.7” coding methods with translation of them into three VHDL processes and direct code
assignment is presented on Fig. 2.

We can present the following conclusions based on our experiment results:

- the binary coding method gives the best results for FSM with few internal states (5) and
for FSM with AN > 0.7 (the state transition graph with many cycles)

- “one-hot” coding methods is better for other cases and mostly generates the faster circuits
(but the XILINX FOUNDATION uses optimization methods for “one-hot” coding)

- the original “own” method is universal one because it combines the advantages of both
“one-hot” and binary methods (see Fig. 2)

- for such FSM implementation where the majority of the CLB blocks are used (e.g. 90%)
the “one-hot” methods gives better results mainly with respect to the maximum working
frequency due to easier wiring

- all FSM decomposition types are not advantageous to use in most cases due to great
information exchange - the parallel decomposition is the best one (when it exists)

- the different strategy for looking for the partitions – the best FSM partition is not that one
with minimal number of internal states but that one with the minimal sets of input and
output symbols – could be used for FPGA implementation

5. ACKNOWLEDGEMENTS
This paper is based on the results of several student projects supervised by the author during
two years. This research was in part supported by the internal CTU grant.

REFERENCES
[1] Ashar, P., Devadas, F., Newton, A.R.: “Sequential Logic Synthesis”, Kluwer Academic

Publishers, Boston/Dordrecht/London 1992

[2] Hrdý, T.: “Influence of the FSM decomposition to their implementation”, Diploma thesis,
CTU Prague, FEL, 2001 (in Czech)

[3] Kubátová, H., Hrdý, T., Prokeš, M.: “Problems with the Encoding of the FSM with the
Relation to its Implementation by FPGA”, ECI2000 Electronic Computers and
Informatics, International Scientific Conference, Herl’any 2000.

[4] Prokeš, M: “Influence of the FSM internal states codind to their implementation”,
Diploma thesis, CTU Prague, FEL, 2001 (in Czech)

[5] Studenovský, J.: Coding of internal states of synchronous sequential circuit. Diploma
thesis, CTU Prague, FEL, 1999 (in Czech)

[6] Výmola, V.: Decomposition of a finite state automaton. Diploma thesis, CTU Prague,
FEL, 2000 (in Czech)

[7] Benchmarks test
ftp://ftp.mcnc.org/pub/benchmark/Benchmark.dirs/LGSynth93/LGSynth93.tar

[8] The Programmable Logic Data Book. XILINX Tenth Anniversary, 1999
http://www.xilinx.com

Fig. 2. Number of used CLB blocks for all processed benchmarks

