
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

A SYSTEMATIC DEVELOPMENT
OF VIRTUAL COMPONENTS

COMPATIBLE TO STANDARD ICS
(AN INDUSTRIAL EXPERIENCE)

Mirosław BANDZEREWICZ*), Wojciech SAKOWSKI**),
Włodzimierz WRONA***)

 *) Evatronix S.A., ul. Dubois 16, 44-100 Gliwice, POLAND
tel./fax +48 32 231 11 71, e-mail: mirek@gliwice.evatronix.com.pl

http://www.evatronix.com.pl

**) Institute of Electronics, Silesian University of Technology
ul. Akademicka 16, 44-100 Gliwice, POLAND

tel. +48 32 237 17 47, fax +48 32 237 22 25, e-mail: sak@boss.iele.polsl.gliwice.pl

***) Technical University of Łódz, Bielsko-Biała branch
Willowa 2, 43-308 Bielsko-Biała, POLAND

Abstract Paper presents a proven methodology of development and productization
of virtual electronic components. Methodology consists of rigorous approach to
development of component specification, reverse engineering of behavior of
reference circuits, application of industry-standard rules to coding of RTL model
in a hardware description language and extensive testing and verification activities
leading to (measured) high quality of hdl model and to FPGA prototype. In the
final stage called productization a series of deliverables are produced to ensure
effective reuse of the component in different (both FPGA and ASIC) target
technologies.

Key Words. Virtual Components, IP Cores, Hardware Description Languages,
high level design, quality assurance

1. OBJECTIVE AND MOTIVATION
Objective of the effort described in this paper was to define a quality assurance policy for the
development of the virtual components based on existing integrated circuits. At present our
company specializes in cores compatible to 8-bit and 16-bit microcontrollers and
microprocessors. Our methodology is based on the methodology recommended in [1], but it
reflects to some extent peculiarities of our current profile as well as the fact that we have no
access to certain EDA tools recommended in [1]. We found a lot of inspiration in the paper
presented by SICAN company (now SCI-WORX) at the FDL’99 in Lyon [2].

The main motivation for the definition of a formalized methodology was to assure a high
quality of the cores that we develop. Our first (bad) experiences in the development of a

microcontroller core that was compatible to Intel 8051 chip [3] showed that lack of consistent
and rigorous methodology results in a buggy core. Moreover, lack of a clear and complete
specification turn the debugging of our first core into nightmare.

2. OVERVIEW OF THE METHODOLOGY

2.1. Design flow
Basic development steps in the creation of a virtual component include:

• Development of the macro specification,
• Partitioning the macro into subblocks,
• Development of a testing environment & test suite,
• Design of subblocks,
• Macro integration and final verification,
• Prototyping the macro in FPGA,
• Productization.

We will discuss these stages one by one below focusing on details related to our experiences.

2.2. Project management issues
At the beginning of a new project all the steps enumerated above are refined into subtasks and
scheduled. Human and material resources are allocated to the project. Usually several projects
are being realized in parallel. Therefore people, equipment and software have to be shared
among these projects. We use MS Project software to manage scheduling of tasks and
allocation of resources.

3. DEVELOPMENT OF THE MACRO SPECIFICATION
We use the documentation of an original device as a basis for specification of the core
modelled after it. However, the documentation provided by the chip manufacturer is oriented
towards chip users and it usually does not contain all details of chip behavior that are
necessary to recreate its full functionality. Therefore analysis of the original documentation
results in a list of ambiguities that have to be resolved by testing the original chip. The overall
testing program is usually very complex, but the first tests to be written and run on a hardware
modeler (see point 5) are those that provide resolve ambiguities in documentation.

At a later stage of specification we use an Excel spreadsheet to document all operations and
data transfers that take place inside the chip. Spreadsheet columns represent time slots and
rows represent communication channels. Such approach enables gradual refinement of
scheduling of data transfers and operations up to the moment when clock cycle accuracy is
reached. It reveals potential bottlenecks of the circuit architecture and makes easy to remove
them at this early design stage.

4. PARTITIONING INTO SUBBLOCKS
Dataflow spreadsheet makes easier to define proper partitioning of the macro into subblocks.
This first level of design hierarchy is needed to handle the complexity and to easier to divide
design tasks between several designers. The crucial issue in this process is distribution of
functions between the subblocks, definition of the structural interfaces and specification of
timing dependencies between them.

5. TESTING ENVIRONMENT AND PROCEDURES

5.1. Testing the reference chip
As a reference for our virtual components we use hardware models that run on a (second
hand) CATS hardware modeler (Fig 1). The hardware modeler interfaces over network to the
CADAT simulator. The environment of the chip is modeled in C. Test vectors supplied from
a file may be used for providing stimuli necessary to model interaction of the modeled chip
with external circuits (e.g. interrupt signals).

An equivalent testing environment is developed in parallel as a VHDL testbench to be run on
VHDL simulator. We use Aldec’s ActiveHDL simulator that proved to be very effective in
model development and debugging phase. It enables us to import the testing results obtained
with a hardware model into its waveform viewer in order to compare them against simulated
behavior of the core under development.

5.2. Test suite development
Test suite development is based on the specification. Specification is analyzed and all the
functional features of the core that should be tested against the original device are
enumerated. Test development team (engineer) starts with development of tests that are
needed to resolve ambiguities in available documentation of the chip to which a core has to be
compliant.

Most of the functional tests are actually short programs written in assembly language of the
processor that is modeled. Each test exercises one or several instructions of the processor. For
instructions supporting several addressing modes tests are developed to check all of them.
After compiling a test routine the resulting object code is translated to formats that may be
used to initialize models of program memory in the testbenches (both in CADAT and VHDL
environments). We have developed a set of utility procedures that automate this process.

In order to test processor interaction with its environment (i.e. I/O operations, handling of
interrupts, counting of external events, response to reset signal) a testbench is equipped with
stimuli generator.

Fig. 1 CATS hardware modeler

Single height
hardware model cartridge
(e.g. DS80530)

Double height
hardware model cartridge

(e.g. 320C50)

FPGA adapter that replaces

original chip during

prototype testing

5.3. Code coverage analysis
The completeness of the test suite is checked with code coverage tool (VN-Cover from
TransEDA). The tool introduces monitors into the simulation environment and gathers data
during a simulation run. Then the user can check what percentage of code statements was
actually executed. More sophisticated measures like branch or path coverage may be also
determined.

Incompleteness of the test suite may be a reason for leaving bugs in untested part of code [4].
Therefore we set a requirement to achieve 100% statement coverage during RTL simulation
(i.e. each statement must be executed at least once during simulation of the complete test
suite). Code coverage also helps to reveal redundancy of the test suite and sometimes the
redundancy in the hardware design under test.

TransEDA State Navigator tool complements VN-Cover with special tools for verifying finite
state machines. It may extract fsm from the VHDL source and present it graphically as state
diagram. It also analyzes the results of simulation and shows what edges of the state diagram
were taken or whether particular sequence of edges was exercised.

5.4. Automated testbench
Our cores are functionally equivalent to the processors they are compliant to, but they are not
always cycle accurate. Therefore a strategy for automated comparison of results obtained with
hardware modeler to those obtained by simulating RTL model was developed.

Scripts that control simulators may load the program memory with subsequent tests and save
the simulation data into files. These files may serve as reference for post-synthesis and post-
layout simulation. The testbench that is used for these simulation runs contains a comparator
that automatically compares simulator outputs to the reference values.

6. SUBBLOCK DEVELOPMENT
The main part of the macro development effort is the actual design of subblocks defined
during specification phase. For the moment we have no access to tools that check the
compliance of the code to a given set of rules and guidelines. We follow the design and
coding rules defined in [1]. We check the code with VN-Check tool from TransEDA to ensure
that the rules are followed. Violations are documented.

For certain subblocks we develop separate testbenches and tests. However, the degree to
which module is tested separately depends on its interaction with surrounding subblocks. As
we specialize in microprocessor core development it is generally easier to interpret the results
of simulation of the complete core than to interpret the behavior of its control unit separated
from other parts of the chip. The important aspect here is that we have access to the results of
the test run on the hardware model that serve as reference.
On the other hand certain subblocks like arithmetic-logic unit or peripherals (i.e. uarts and
timers) are easy to test separately and are tested exhaustively before integration of the macro
starts.

Synthesis is realized with tools for FPGA design. We use Synplify, FPGA Express and
Leonardo. We realize synthesis with each tool looking for the best possible results in area-
oriented and performance-oriented optimizations.

7. MACRO INTEGRATION
Once the subblocks are tested and synthesized they may be integrated. Then all the tests are
run on the RTL model and the results are compared against the hardware model. As soon as
the compliance is confirmed (which may require a few iterations back to subblock coding and
running tests on integrated macro again) a macro is synthesized towards Xilinx and Altera
chips and the tests are run again on the structural model.

8. PROTOTYPING
The next step in the core development process is building of a real prototype that could be
used for testing and evaluation of the core.

For the moment we target two technologies: Altera and Xilinx. Our cores are available to
users of Altera and Xilinx FPGAs through AMPP and AllianceCORE programs. In the near
future we are going to implement our cores in Actel technologies, too. Placing and routing of
a core in a given FPGA technology is realized with vendor specific software. The tests are run
again on the SDF-annotated structural model. We developed a series of adapter boards that
interface FPGA prototype to a system in which a core may be tested or evaluated.

The simplest way to test the FPGA prototype is to replace an original reference chip used in
the hardware modeller with it. This makes possible to compare behavior of the prototype
against the original chip. However for some types of tests even hardware modeller does not
provide necessary speed. These tests can only be executed in prototype hardware system at
full speed. Such approach is a must when one need to test a serial link with a vast amount of
data transfers or to perform floating point computations for thousands of arguments. Our
experience shows that even after an exhaustive testing program, some minor problems with
the core remains undetected until it runs real-life application software.

For this reason we have developed a universal evaluation board (Fig.2). It can be adapted to
different processor cores by replacement of on-board programmable devices and EPROMs.
An FPGA adapter board (see Fig. 1) containing the core plugs into this evaluation board. An
application program may be uploaded to the on-board RAM memory over a serial link from
PC. Development of this application program is done by a separate design team. This team
plays actually a role of an internal beta site, that reveals problems in using the core before it is
released to the first customer.

Fig. 2 Processor core evaluation board

FPGA adapter (or adapter with

original processor)
plugs in here

LCD display

Serial

connectors

Simple keypad

Socket
for extension board

boot controller,

EPROM or RAM for

firmware

and application

PLDs that configure
the evaluation board
for a chosen processor

LEDs

The FPGA adapter board may also be used to test the core in the application environment
provided that a prototype system exists. Such system should contain a microcontroller or
microprocessor that is to be replaced with our core in the integrated version of the system.
The adapter board is designed in such a way that it may be plugged it into the microprocessor
socket of the target system. Using this technique we made prototypes of our cores run into
ZX Spectrum microcomputer (CZ80cpu core) and SEGA Video Game (C68000 core), in
which they replaced original Zilog® and Motorola® processors.

9. PRODUCTIZATION
The main goal of productization phase is to define all deliverables that are necessary to make
the use of the virtual component in the larger design easy. We develop simulation scripts for
Modelsim simulator and we run all the tests with this simulator to make sure that the RTL
model simulates correctly with it. As we target FPGA market an important issue in
productization phase is to develop all the deliverables for firm cores required by Altera and
Xilinx from their partners participating in AMPP and AllianceCore programs.

Our foreign partners help us in developing synthesis scripts for Synopsys Design Compiler
which we do not have access to. This deliverable is a must for customers targeting ASIC
technologies. Synthesis scenarios for high performance and for minimal cost are developed.

We use VHDL during core development we but we translate our cores into Verilog, to make
them available to customers that only work with Verilog HDL. The RTL model is translated
automatically while the testbench have to be developed in Verilog manually (the translation
tool is not able to translate all VHDL constructs into Verilog).

User documentation is also completed at this stage (an exhaustive, complete and updated
specification is very helpful).

10. EXPERIENCES
The methodology described in this paper was defined over last few years during design of
several versions of 8051-compatible microcontroller core [3].

It was then successfully applied to development of several virtual components compatible to
Microchip PIC® 1657 microcontroller, to Motorola MC68000 16-bit microprocessor, to Zilog
Z80 8-bit microprocessor and its peripherals, to TI® 32C025 digital signal processor as well
as to VCs that implement controllers of standard serial links (I2C, SDLC and USB).

We continue to improve this methodology in order to turn it into a set of formal quality
assurance procedures compliant to ISO 9000 requirements.

REFERENCES
[1] M. Keating, P. Bricaud, Reuse Methodology Manual 2nd ed., Kluwer Academic

Publishers, 1999
[2] J.Haase, Virtual Components - from Research to Business, Proceedings of the FDL'99

Conference, Lyon, 1999
[3] M.Bandzerewicz, W.Sakowski, Development of the configurable microcontroller core,

Proceedings of the FDL'99 Conference, Lyon, 1999
[4] M.Stuart, D. Dempster, Verification Methodology Manual, Teamwork International,

Hampshire UK, 2000

