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Abstract. The paper reports on some experiments with implementing positional 
digital image filters using field programmable devices. It demonstrates that a 
single field programmable device may be used to build such a filter. By using 
extensive pipelining in the design, the filter can achieve performance of 50 million 
pixels per second (using Xilinx XC4000E devices) and almost 90 MHz (in case of 
Virtex-2 devices. These results were obtained using automatic synthesis from 
VHDL descriptions, avoiding any direct manipulation in the design.  

Key words: Positional Filter, Median Filter, Synthesis, FPGA Implementation 

1. INTRODUCTION 

The paper reports on the implementation of a class of filters used in image processing. The 
filtering is realised on a running, fixed size window of pixel values. Positional filtering is 
obtained by arranging the values in an ordered sequence (according to their magnitude) and 
choosing one that is at a certain position (first, middle, last or any other). Thus, the class of 
filters encompasses median, max and min filtering, depending on the choice of this position. 

There are various algorithms used in positional filtering [7,10]. These are roughly classified to 
three groups: compare-and-multiplex [9], threshold decomposition [6] and bit-wise 
elimination [1,8,11]. All can be used with the currently available, powerful FPGA devices. 
Still, the bit-wise elimination methods seem most appropriate for the cell array organisation. 

Some specific positional filters have commercial VLSI implementations. There is no device 
that can be configured to realise any position filtering, though. Even if only median, min or 
max filtering is required it may be advantageous to use FPGA devices, as they offer greater 
versatility and ease of reengineering. Of course, FPGA implementations are particularly well 
suited for application in experimental image processing systems. 

First attempts to use FPGAs as reconfigurable image filters were reported almost as soon as 
the devices became available [2,3,5]. The devices proved to be too inefficient for full-fledged 
use forcing the designers to limit the window size, pixel rates or the width of their bit 



representations. This is no longer the case since the XC4000E family of devices became 
available [4]. 

Filter reconfiguration can be fully utilised only if there is an easy route to obtain new 
configuration variants. In case of FPGA implementation this is offered by auto-synthesis: new 
algorithms are described in terms of a hardware description language and the rest is done by 
the design tools with no human interaction. The results in the paper were obtained using the 
Xilinx Foundation tools with FPGA Express. 

2. BITWISE ELIMINATION METHOD 

Positional filtering is based on reordering of the pixel values according to their magnitude. 
Let’s denote the k-th value in the reordered sequence by k

nP  (where n is the length of the 
sequence). After reordering, only a single value at the specific position is of interest. In bit 
wise elimination, values that are certain not to be at this position are removed from the 
sequence. 

Values are compared bit-wise starting from the highest order bits. Lets assume that the r-1 
highest order bits have already been analysed by this method. Then, all the values that are left 
for consideration must have the high order r-1 bits equal to each other (and to the result under 
evaluation). Values that had these bits different were eliminated leaving only n’ values in the 
sequence. The position also has to be adjusted from initial k to k’ after eliminating values that 
were greater. The r-th bit of result is determined as P rn

k
'
' ( )  by ordering the corresponding bits 

of the reduced sequence and considering k’-position. All the values that differ on the r-th bit 
from P rn

k
'
' ( )  are eliminated and n’ is modified accordingly. If the eliminated values are greater 

than the quantile bit, then k’ is also modified.  

The algorithm ends when there is only one value left (or all the values left are equal to each 
other). 

The approach, with changing k and n is not well suited for circuit implementations. Instead of 
eliminating the values, it is more convenient to modify them in a way that is guaranteed not to 
change the result [2,8,11]. If one knows that a value is larger than the k-quantile, all its lower 
bits are set to 1. If one knows that it is smaller, the lower bits are set to 0. Thus, single bit 
voting may still be used and the values of k and n are fixed. This is the method used for the 
presented FPGA implementations. It can be formally described by the following iterative 
equations, where iterations start with the highest order bits (r=m-1) and end with the lowest 
(r=0): 
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where xi(r) is the r-th bit of i-th pixel in the filtering window, 
 P rn

k ( )  is the r-th bit of the value  at k-th position (k-quantile), 
 M ri ( )  and S ri ( )  are the modifying functions. 

Using the presented equations (1) a bit-slice processor may be implemented (Fig. 1). This is a 
combinatorial circuit that processes the single bits of the input pixels to produce a single bit of 
the result. The most important part of this bit-slice is the thresholding function corresponding 
to the last of equations (1). 

3. PIPELINED FILTER IMPLEMENTATIONS 

The simplest hardware implementation of the filter can be obtained by using m bit-slice 
processors with connected modifying function inputs and outputs. This would be a fully 
combinatorial implementation with very long delays, as the modifying functions have to 
propagate from the highest to the lowest order bits. 

Inserting pipelining registers between the bit-slice processors shortens the propagation paths 
[4]. The registers may be inserted either between every processor, as shown in Fig. 2, or only 
between some of them. Since this introduces latency between the bit evaluations, additional 
shift registers are needed on the inputs and outputs to ensure in-phase results. 
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Fig. 2. Pipeline filter architecture 
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Fig. 1. Bit-slice processor 



This architecture has very short propagation paths between registers and so it ensures highest 
pixel processing rates. There is latency between the input signals and the output equal to the 
number of bits in the pixel representations. Normally, in image processing applications this is 
not a problem. Just the image synchronisation signals need to be shifted correspondingly. It 
may be unacceptable, though, if image filtering is just a stage in a real-time control 
application. 

4. FPGA IMPLEMENTATION RESULTS 

The pipelined filter architecture was implemented for a filtering window of 3×3 pixels. The 
inputs of the filter were 3 pixel streams: one obtained by scanning the image and two delayed 
(by one and two horizontal scan periods). The consecutive horizontal window values were 
obtained by registering the input streams within the filter (to reduce the demand on 
input/output pads). 

All the presented results were obtained by implementing the filter that computed the median. 
This has no significant effect on the device performance or complexity, except that the min 
and max filters have much simpler thresholding functions. 

The filters were implemented using different size of pixel value representations (binary values 
of 4, 8 12 and 16 bits). In each case the smallest and fastest device that could contain the 
circuit was chosen for implementation. Table 1 contains the results of filter implementations 
using XC4000E family of devices, whereas Table 2 presents those for the Virtex-2 packages. 

Table 1. Filter implementations using XC4000E devices. 
Pixel representation Device Used CLB’s Pixel rate 

4 bits 4003EPC84-1 94 55.9 MHz 
8 bits 4008EPC84-1 288 50.1 MHz 

12 bits 4020EHQ208-1 645 50.6 MHz 
16 bits 4025EPG223-2 993 37.5  MHz 

Table 2. Filter implementations using Virtex-2 devices. 
Pixel representation Device Used slices Pixel rate 

4 bits 2V40FG256-4 99 88.8 MHz 
8 bits 2V40FG256-4 209 91.9 MHz 

12 bits 2V80FG256-4 345 88.7 MHz 
16 bits 2V80FG256-4 453 83.7 MHz 

 
The circuit complexity, expressed in terms of the number of cells used (CLB’s or Virtex 
slices), results from the number and complexity of bit-slice processors (complexity of the 
combinatorial logic) and from the number of registers used in pipelining. The first increases 
linearly with the size of pixel representation. On the other hand the number of registers used 
in pipelining increases with the square of this representation. In case of the XC4000 
architecture, the pixel representation of 8 bits is the limit, above which the complexity of 
circuit is determined solely by the pipelining registers (all the combinatorial logic fits in the 
lookup tables of cells used for pipelining). 

The synthesis tools had problems in attaining optimal solutions for the synthesis of 
thresholding functions in case of the cells implemented in XC4000 devices (this was not an 



issue in case of min and max positional filters). Most noticeably, the design obtained when the 
threshold function was described as a set of minterms required 314 CLB’s in case of 8-bit 
pixel representation. By using a VHDL description that defined the function as a network of 
interconnected 4-input blocks, the circuit complexity was reduced to the reported 288 cells. 
The reengineered threshold function had slight effect on the complexity of 12-bit filter and 
none on the 16-bit one. 

The most noticeable improvement in using the Virtex-2 devices for positional filter 
implementations was in the operation speed: approximately 50 MHz in case of the XC4000E 
devices and 80-90 MHz in case of Virtex-2. Some other architectural improvements are 
apparent, too. The increased functionality of Virtex slices led to much more effective 
implementations of pipelining registers: the FPGA Express synthesiser implemented them as 
shift registers instead of unbundled flip-flops, significantly reducing the slice usage. Improved 
lookup table functionality eliminated the problem of efficient decomposition of threshold 
function, too (at least in case of the 3×3 filtering window). 

5. CONCLUSIONS 

The presented implementation results show that FPGA devices have attained the speed grades 
that are more than adequate for implementing positional image filters of very high resolution. 
Furthermore, it is no longer necessary to interconnect multiple FPGA devices or limit the 
circuit complexity by reducing the pixel representations. In fact, the capabilities of Virtex-2 
devices exceed these requirements both in terms of performance and cell count. 

The proposed bit-wise elimination algorithm with pipelining is appropriate for the cell 
architecture of FPGA devices. The only problem is the latency, which may be too high in case 
of long pixel representations. By limiting the pipelining to groups of 2, 3 or more bit-slice 
processors it is possible to trade off latency against performance.  

Positional filtering is just a stage in complex image processing. The analysed filter implemen-
tations leave a lot of device resources unused. This is so, even though the cell utilisation for 
representations of 8 bits or more is between 60 and 97%. The cells are mostly used for 
registering and the lookup tables are free. These may well be used to implement further stages 
of image processing. 

It is very important that the considered implementations were directly obtained by synthesis 
from functional descriptions, expressed in VHDL language. This makes feasible the concept 
of reconfigurable filters, where the user describes the required filtering algorithms in a high-
level language and these are programmed into the filter. Still, the design tools have not 
reached the desirable degree of sophistication and reliability. This is especially true of the 
obscure template matching rules, peculiar to specific synthesis tools. Also, the correctness by 
design paradigm is not always met – some errors of improperly matched templates were 
detected only by testing the synthesised device.   
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