
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Góra, Poland

PETRI NET MODELS OF VHDL CONTROL
STATEMENTS

Ewa IDZIKOWSKA

Dpt. of Control, Robotics and Computer Science, Technical University of Poznań,
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, POLAND,

Idzikowska@sk-kari.put.poznan.pl

Abstract. Hardware description languages are used to model logical systems on
the behavioural level. The model describes the system as a set of interconnected
processes, which can be executed in parallel and represents two aspects of the
process – computation and control. Control can be modelled by Petri nets. Such
a model is very useful to analyse, which state can be reached starting from a given
system state. Petri net models of all VHDL control statements are shown in this
paper. These models are used to generate automatically control flow model.

Key Words. Hardware Description Language, Petri nets, control flow

1. INTRODUCTION
In the VLSI area a structured design process is required. In response to this need hardware
description languages (HDL) are developed. VHDL is a language for describing digital
electronic systems. It is designed to fill a number of needs in the design process. Firstly, it
allows description of the structure of a design, that is how it is decompose into sub-designs
and how these sub-designs are interconnected. Secondly, it allows the specification of the
function of designs using familiar programming language forms. Thirdly, as a result, it allows
a design to be simulated before being manufactured, so that designers can quickly compare
alternatives and test for correctness without the delay and expense of hardware prototyping.
VHDL models are also used in the process of generating test and silicon compilation.

2. CONCURENCY
The hardware description languages must have a mechanism for modelling signals flow
through the circuit. In VHDL (VHSIC Hardware Description Language) this requirement is
handled by the process construct. Each process represents a block of logic and all processes
execute in parallel. The process construct represents the method by which concurrent
activities (parallel signal flow) in digital circuits are modelled.

The VHDL model represents two separate aspects of the process - computation and control,
but the model does not explicitly distinguish between control and data. We have to find out
ourselves this different semantic. The control part of circuit usually has much less states than

the data part thus it is possible and feasible to derive the control structure This structure can
be represented by using Petri nets. It is interesting to analyse, which state can be reached
starting from a given system state.

3. CONTROL FLOW
As mentioned above, the VHDL control information can be represented using Petri nets. The
sequence of instructions, the flow of information and the order of computation performance
can be modelled by means of Petri nets.

The control flow model is derived from the VHDL source code in the following way:
� places represent VHDL code statements,
� transitions represent actions - execution of code statements from its pre-places.

Control flow can be modelled with using Conditional Petri Nets with Time [3].

Def. Control flow model
The Petri-net representation of the control flow in VHDL model, CFPN, is a digraph derived from
the VHDL source code, with mapping of VHDL code statements to the places. Transitions
represent execution of these statements.
CFPN = (P, T, F, Mo, D, C), where:
P = { p1, p2,..., pn} - a finite set of places,
T = { t1, t2,..., tm} - a finite set of transitions,
Mo = { m1, m2,..., mn} - an initial marking,
D = { d1, d2,..., dm} - a finite set of time intervals associated with transitions,
C = { c1, c2,...., cm} - a finite set of conditions associated with transitions,
F - a control flow relation.

Petri net model of the control flow is automatically derived from the VHDL source program.
To do it, it’s necessary to find all VHDL control statements and control variables. In order to
do it, an index S is assigned to each statement. The Petri net place, which represents statement
S, has the same index. The next chapters describe Petri net models of VHDL control
statements.

4. PROCESSES AND THE WAIT STATEMENT
The primary unit of behavioural description in VHDL is a process. It is a sequential body of
code which can be activated in response to changes in state. When more than one process is
activated at the same time, they execute concurrently. The process is specified as follows [2]:

PROCESS(sensitivity_list)
 process declarative part
begin

 sequence of statements (1)

END PROCESS (2)

The process is activated initially during the initialisation phase of simulation. It executes all of
the sequential, and then repeats, starting again with the first statement. The process may
suspend itself by executing a wait statement. This is of the form:

WAIT ON sensitivity_list UNTIL condition FOR time _expression; (1)

The sensitivity_list of the wait statement and the list in the header of the process statement
specify a set of signals to which the process is sensitive while it is suspended. When an event

occurs on any of these signals, it means the value of the signal changes, the process resumes
and evaluates the condition. If it is true or if the condition is omitted, execution proceeds with
the next statement. Otherwise the process resuspends. The time_expression indicates the
maximum time for which the process will wait. If it is omitted, the process may wait
indefinitely.

Fig.1. Petri net model of a process. Fig.2. Petri net model of a Wait statement.

A Petri nets model of a process is shown at the Fig. 1. Transition t1 is the conditional
transition and represents an input to the process. It can be fired, when a token is in the place 2,
and the value at least one of the signal from sensitivity_list changes. A token in the place 2
indicates, that the process is suspended. After firing t1 process is resumed (a token in the
place 1) and is active until transition t2 is fired. Then the process will be suspended again.

Fig. 2 shows Petri net model of Wait statement. This statement suspends process. The process
is resumed after firing transition t.

5. PETRI NET MODEL OF CONTROL STATEMENTS
In this section Petri net models of all control statements are shown. These models are used in
the process of automatic control flow model derivation.

There are some control statements in VHDL:

� IF-THEN-ELSEIF-ELSE
� CASE
� LOOP
� EXIT
� NEXT

5.1. Conditional statement
The full form of the conditional IF statement is as follows [1]:

 IF condition_1 THEN (1
 sequence of statements (2)
 ELSEIF condition_2 THEN (3)
 sequence of statements (4)
 ELSE
 sequence of statements (5)
 END IF; (6)

1
signal changes and condition or

timeout
t

1

signal changes

2

t1

t2

The elseif and else clauses are optional. Petri net model of IF statement is shown at the Fig.3.

Fig.3. Petri net model of the IF statement.

Transitions t1, t2, t3 and t4 are conditional. It means, that the each of this transition may be
fired if it is enabled and if its condition is TRUE.
Transitions t5, t6 and t7 are the time transitions. Each time attributed to these transitions
represents delay associated with realization of statements 5, 4 and 7 respectively.

5.2. CASE statement
The case statement performs decoding based on the value of a control expression and then
executes a selected statement or group of statements. The full form of this statement is as
follows:

CASE n IS (1)

 WHEN expression_1⇒statement_1; (2)

 WHEN expression_2⇒ statement_2; (3)

 …

 …

 WHEN expression_n⇒ statement_n; (n+1)

 END CASE; (n+2)

The Petri net model of this statement is shown at Fig.4. Transitions t1, t2, tn are conditional
transitions and can be fired, if the value of control expression is equal n.

NOT(condition_1) condition_1

NOT(condition_2)
condition_2

5 4

t1 t2

t4t3

t6t5

2

6

3

1

t7

Fig.4. Petri net model of the CASE statement.

5.3. Loop statements
VHDL has a basic loop statement, which can be augmented to the usual forms while and for
loops seen in other programming languages. The for iteration scheme allows a specified
number of iterations. The loop parameter l declares an object, which takes on successive
values from the range [wp, wk] for each iteration of the loop [1].

 FOR l IN wp TO wk LOOP (1)

 sequence of statements (2)

 END LOOP; (3)

The while iteration scheme allows a test condition to be evaluated before each iteration. The
iteration only proceeds if the test (l<= wk) evaluates to TRUE.

loop label: WHILE condition LOOP (1)

 sequence of statements (2)

 END LOOP loop label; (3)

Petri net models of these two loop statements are shown at Fig. 5 and 6 respectively.

Fig.5. Petri net model of the FOR…LOOP
statement.

Fig.6. Petri net model of the WHILE…LOOP
statement.

n=expression_1 n=expression_n

n+132

n+2

n=expression_2

t1 t2 tn

t4 t5 tm

1

NOT(l IN wp TO wk) l IN wp TO wk1

2 3

t1 t2

t3 t4

NOT(condition) condition

2 3

1

t1 t2

t3 t4

There are two additional statements, which can be used inside a loop to modify the basic
pattern of iteration. The next statement terminates execution of the current iteration and starts
the subsequent iteration. The exit statement terminates execution of the current iteration and
terminates the loop.

loop label: WHILE condition_1 LOOP (1)

 sequence of statements; (2)

 NEXT loop label WHEN condition_2 (3)

 sequence of statements; (4)

 END LOOP loop statement; (5)

The Petri net model of this statement is shown at Fig.7.

The loop statement with exit is presented below and its Petri net model is shown at Fig. 8.

 LOOP (1)
 sequence of statements; (2)

 EXIT WHEN condition; (3)

 sequence of statements; (4)

 END LOOP; (5)

Fig.7. Petri net model of the WHILE…LOOP

with NEXT statement.
Fig.8. Petri net model of the LOOP with EXIT

statement.

NOT(condition_1) condition_1

NOT(condition_2) 3

1

2 5

4

condition_2

condition NOT(condition)

4 5

1

2

3

6. SUMMARY
In this paper Petri net models of VHDL control statements are presented. These models are
used to generate automatically of control flow model. The control flow dictates the partial
ordering of data flow in VHDL model and represents the conditions under which the
processes are activated. Petri net model of VHDL control flow is very useful in the process of
generating tests for design verification.

REFERENCES
[1] Armstrong J.R., Chip-level modeling with VHDL. Prentice Hall, Englewood Cliffs, New

Jersey,1989
[2] Ashenden P.J., The VHDL Cookbook, Dept. Computer Science University of Adelaide,

South Australia 1990
[3] E. Idzikowska, Generation Of Validation Tests From Behavioural Description In Vhdl

Proc. of Sixth Annual Advanced Technology Workshop ATW98, Ajaccio, France 1998

