
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

CHDL - AN APPROACH FOR HARDWARE
DESIGN AT THE SYSTEM LEVEL

Miroslaw FORCZEK

Aldec-ADT, Compilers Division,
ul. Lutycka 6, 44-100 Gliwice, POLAND, mirekf@aldec.katowice.pl

Abstract. Currently, designers turn to C/C++ instead of using HDL languages at
the initial stage of their projects. Manual translation from C/C++ into an HDL is
extremely time-intensive. Even with latest approaches such as C++ library of HDL
classes, a designer still has invested a lot of time on re-writing the project code at
the RTL level. Aldec's CHDL approach, a C subset, addresses precisely the
problem of C to HDL conversion automation. The possibilities of an algorithm
parallelism reconstruction from its software version on example of the DCT
routine were shown.

Key Words. System-Level Hardware Design, Behavioral Synthesis, HDL
Languages, C/C++ Language

1. INTRODUCTION
As devices become more complex, their design processes take more time and become more
expensive than before. One of the most important improvements, which was introduced over
the past years, is an RTL synthesis tools, which automates the design transformation from
RTL into gate-level process [10]. Since its introduction, most of a designer's efforts stop at the
RTL stage of the design specification. Automated tools perform the rest of work (fig. 1). The
synthesis tools have been improved since their first appearance, and it now makes no sense in
terms of an economical aspect to try to make a better design manually than a synthesized one.
A few decades ago the algorithm's distinction into either software or hardware was
introduced. The possibilities of today's highly integrated chips cause, such a distinction is not
so obvious now [8,11]. The algorithms also become more complex and change frequently.
Making updates in the present hardware implementations is a costly and time-intensive
process. The algorithms are now prototyped and verified in a software implementation
version. Often they exist in software form for a longer time, acquiring stability before
hardware implementation is required. This is a way hardware designers turn to classical
programming languages such as C or C++ at the first stage of the project instead of using
HDL languages. This causes new problems. One of them is making the transition from C/C++
implementation into HDL implementation. These two implementations are totally different:

- C/C++ implementation is a sequential process (in most cases) while HDL
implementation is a parallel, multi-process design,

- - C/C++ implementation runs without any clock signals while HDL implementation
must take into consideration system clock signal and must address the signals timing
issues.

structural &
behavioral level

RTL level

gate level

net-list
specification

re
fin

e
(o

ld
 s

ty
le

: m
an

ua
l r

ef
in

e)

sy
nt

he
si

s
to

ol

HDL

"compilation"
1:1

structure preserved
RTL code preserved

structural &
behavioral level

RTL level

gate level

net-list
specification

abstract
algorithm

HDL classes
structural level

HDL classes
RTL level

re
fin

e

re
fin

e
(o

ld
 s

ty
le

: m
an

ua
l r

ef
in

e)

sy
nt

he
si

s
to

ol

C/C++

HDL

C++ compiler/linker

HDL simulation kernel
.LIB

executable model
.EXE

Fig. 1. Hardware design paths: with use of an HDL language (left) and with use of HDL classes in
C++ (right)

The designer has to wait until the entire project is converted into HDL before he or she can
validate the design again. This causes the conversion bugs to accumulate, making running the
entire project much more difficult than in the case of having regular regression tests. A
different approach has been proposed that address these problems. Currently, the most
popular design solution is C++ library of HDL classes [2,3,9]. HDL classes enables a normal
C/C++ environment with HDL constructs like modules, processes and signals. The designer
performs a full conversion process in the same environment. As a result, the designer is able
to make regular regression test at any stage of the conversion. Unfortunately, HDL classes
library is not a solution that fully automates the hardware design path. The designer still has
spent a lot of time on re-writing (refining) the project code from software form into HDL
form (fig. 1).

Aldec's CHDL approach addresses exactly the problem of C to HDL conversion automation.
Instead of enabling C/C++ environment with HDL features and pushing the user to go
throught the refine steps until reaching RTL model, CHDL enables users to synthesize the
HDL code directly from the C algorithm in its natural form.

2. CHDL NOTATION
CHDL is a subset of the C language [6]. The C constructs that made it impossible to perform
full static data and analyze control flow were removed. The table 1 summarizes the C
constructs included in or rejected from CHDL notation.

Table 1. Summary of C constructs included and rejected in CHDL notation
Constructs

class
Included C
constructs

Rejected C
constructs

Comments

Built-in types char, int, float, double void, pointer types

Complex types structure,

union

 translated by fields
expansion into HDL

Operators most of C operators * & (indirection and
address of)

Statements if, switch, while,
do while, for,
function call

 non-recursive
functions are allowed
only

Local scopes
and visibility
rules

 cross-references over
function boundary

The only limitation for a C programmer when using CHDL is the reduced spectrum of
available language features. There is no requirement to re-write the C algorithm in terms of
modules, processes or registers like it is in case of HDL classes. The designer only needs to
eliminate the forbidden constructs, but the algorithm structure remains untouched at the same
level of abstraction. As a result, CHDL will offer true system level design capabilities (un-
timed design).

While manual C code refine into HDL classes the designer explicitly specifies the algorithm's
inherent parallelism (by decomposing the algorithm into processes). Also the hardware
architecture and available resources are explicitly denoted. Consequently, the compilation
from HDL classes model to HDL is very simple process, preserving all semantics of
constructs used in design specification.

All of this additional information (regarding an algorithm's parallelism and its preferred
implementation in hardware) is not present in the CHDL description of an algorithm. Instead,
it utilizes a CHDL compiler task to take all required decisions while compiling the algorithm
into HDL (fig. 2).

3. BEHAVIORAL SYNTHESIS FROM CHDL DESCRIPTION
Having a C algorithm written with the use of behavioral constructs from a small subset
(CHDL notation) is very simple to make its transformation into HDL version. Each CHDL
construct has a directly corresponding construct in HDL language. Of course, such a naive
conversion would result in a single-process design. After synthesizing it into gate level, the
designer will create a working design, but with very poor throughput to area size rate. The
tool for real use must perform CHDL to HDL conversion in an intelligent way, which means
that the behavioral synthesis approach must be implemented. The tool will take on the
majority of decisions on its own. The user should only specify guidelines for preferred
implementation architecture. The synthesized implementation consists of a two kinds of
logical blocks, which are:

- the processing units,
- the control circuits.

structural &
behavioral level

RTL level

gate level

net-list
specification

abstract
algorithm

re
fin

e

re
fin

e
(o

ld
 s

ty
le

: m
an

ua
l r

ef
in

e)

sy
nt

he
si

s
to

ol

C/C++

HDL

c-hdl abstract
algorithm

com
pilation

structure generation

functional synthesis
(target platform specification)

Fig. 2. The hardware design path with use of CHDL notation

The size of the control overhead depends on the proportion between the number of the
algorithm's elementary sub-tasks units and the number of allocated resources for them. In the
event there are less resources then sub-tasks to be processed, the control circuits must provide
sharing the processing units in time, which translates into additional cycles for input data
fetching, retrieving results from outputs and storage of intermediate results. As in any case,
there is a trade-off between implementation size and its efficiency (power dissipation,
throughput) [12]. In a normal design path, the designer has to make such decisions early in the
design cycle, and the initial decision will make a large impact on the final result. With an
automated path, designers can explore more than one architecture with relatively low costs or
risks.

As an example, refer to a 2-D Discrete Consine Transform algorithm [4,5,7]. Assuming that
the software implementation is already in place, the formula would appear as illustrated below
[1]:
void fct2d(double f[], int nrows, int ncols) {

int u,v;
// ...
for (u=0; u<=nrows-1; u++) {

for (v=0; v<=ncols-1; v++) {
g[v] = f[u*ncols+v];

}
fct(g,ncols);

}
for (v=0; v<=ncols-1; v++) {

for (u=0; u<=nrows-1; u++) {
g[u] = f[u*ncols+v];

}
fct(g,nrows);
for (u=0; u<=nrows-1; u++) {

f[u*ncols+v] = g[u]*two_over_sqrtncolsnrows;
}

}
}

This algorithm works as follows:

- 1-D DCT (fct() function) is performed for each row of the matrix f,
- the 1-D DCT is performed for each column from the result matrix after rows

processing,

- the whole result matrix is scaled with a constant coefficient.

From the data and control flow analysis, it is possible to find and extract elementary sub-tasks
that are independent of each other and can be processed in parallel. In this example, there are
few groups of elementary tasks (fig. 3):

- fct() on each row of f,
- fct() on each column of result from previous processing,

- scaling each element of result from previous processing.

fct()

fct()

fct() fct()

*

*

*

*

* *

* * * *

* * * *

* *

f g’0

g’nrows-1

f'

g’’0 g’’nrows-1

f'' f'''

Fig. 3. The data and control flow diagram extracted from source code analysis

The designer now needs to decide what the synthesis mode to use for hardware
implementation of this algorithm will be. The blank array mode can be used if the f matrix
sizes are fixed. In this case, the fastest implementation as well as the larger one will allocate

its own processing unit. The fixed resources mode may be preferred, especially when the f
matrix size varies in run-time. In this case, one will get an implementation that contains the
limited number of processing units and the control block. It could be that the resulting size of
the implementation will still not satisfy the requirements for the first time. If this is the case,
the user has to try other tradeoffs by specifying various synthesis constraints.

4. CONCLUSION
The presented example clearly shows how the behavioral synthesis can be performed from the
system level C algorithm. There is no need to manually re-write the algorithm in HDL manner
to precise parallelism of the algorithm. The compromise made in the aforementioned
approach is to reduce the flexibility of a source language (C in this case) in favor of a
predictable construct for algorithm notation that allows its static analysis. From the very
coarse version of the synthesis tool, new compilation techniques are applied incrementally for
improvement results. There are still several problems to be researched and solved as a
practical implementation in this synthesis tool. The most important issues are as follows:

- processing units synthesis or re-use of library units,
- automatic processing unit functionality selection based on the elementary sub-tasks

code analysis.

REFERENCES
[1] A Fast Discrete Cosine Transform, Signal and Image Processing Group, The University

of Bath, 1998
[2] “An Introduction to System-Level Modeling in SystemC 2.0”, January 2001,

http://www.systemc.org
[3] “Functional Specification for SystemC 2.0”, January 2001, Synopsys Inc., CoWare Inc.,

Frontier Design Inc., 2000, http://www.systemc.org
[4] Intel Image Processing Library. Reference Manual, Intel Corporation, USA, 1999
[5] Intel Signal Processing Library. Reference Manual, Intel Corporation, USA, 1999
[6] International Standard ISO/IEC 9899: 1999(E), Programming Languages – C,

ISO/IEC, 1999
[7] Image Processing Toolbox. Users Guide. Version 2, The MathWorks Inc., Natick, MA,

1999
[8] “QuickSilver: Technology Backgrounder”, QuickSilver Technology, 2000,

http://www.quicksilvertech.com
[9] “SystemC. Version 1.1 User’s Guide”, Synopsys Inc., CoWare Inc., Frontier Design

Inc., 2000, http://www.systemc.org
[10] M.D.Ciletti, Modeling, Synthesis and Rapid Prototyping with the Verilog HDL, Prentice

Hall, New Jersey, 1999
[11] P.Master, K.Lane “Powering up 3G Handsets for MPEG-4 Video”, Communication

Systems Design, January 2001, http://www.cdsmag.com/main/2001/01/0101feat2.htm
[12] J.Phil, Tradeoffs Between Parallel and Serial Architectures in High Performance

Digital Signal Processing, Norwegian University of Science and Technology, Faculty
of Electrical and Computer Engineering, Trondheim, Norway, 1997

