
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

SYMBOLIC STATE EXPLORATION OF
CONTROLLERS SPECIFIED BY MEANS OF

STATECHARTS

Grzegorz ŁABIAK

Computer Engineering and Electronics Institute, Technical University of Zielona Góra,
ul. Podgórna 50, 65-246 Zielona Góra, POLAND, G.Labiak@iie.pz.zgora.pl

Abstract. The FSM and Petri nets theories have elaborated many techniques and
algorithms, which enable the employment of formal method in the fields of
synthesis, testing and the verification. Many of them are based on symbolic state
exploration. This paper focuses on the algorithm of the symbolic state exploration
of controllers specified by means of statecharts. Statecharts are new technique for
specifying behaviour of controllers, which, in comparison with FSM and Petri nets
is enriched with notions of hierarchy, history and exception transitions. The paper
presents the mathematical model of the diagram, its physical interpretation as a
digital circuit and the characteristic function, which is the key notion in state
exploration.

Key Words. Statechart, Logic Control, Symbolic Analysis, BDD

1. INTRODUCTION
Statecharts are a visual formalism for the specification of reactive systems, which is based on
the idea of enriching state-transition diagrams with notions of hierarchy, concurrency and
broadcast communication [6,7,8,10]. It was invented as a visual formalism for complex
systems by David Harel [7]. Today, as a part of UML technology, it is widely used in many
fields of modern engineering [11]. The presented approach features such characteristics as
Moore’s and Mealy’s automata, history and terminal states. There are many algorithms based
on a State Transition Graph traversal for finite state machines, which have applications in the
area of synthesis, test and verification [2,3,4,5,10]. It seems to be very promising to use well
developed techniques from FSM and Petri net theory in the field of synthesis [1], testing and
the verification of controllers specified by means of statechart diagrams. These considerations
caused the elaboration of the new algorithms of symbolic state space exploration.

2. SYNTAX AND DEFINITIONS
Based on the formalism contained in [8], the following definition of syntax can be given. Let
S be the infinite set of states, T the infinite set of transition, E the infinite set of events.
Symbols l,,,,, 321 sssss ′ are used to range over S, l,,,,, 321 ttttt ′ to range over T,

l,,,,, 321 eeeee ′ to range over E.

SNDOFF6

SNDON5

SndOn
*!Off /

{ }

Two*
!One*
!Txt*

!Off /{}

OFF1

On /
{ }

One*
!Two*
!Txt*

!Off /{}

ON2

{10000000,
01101010,
01100110,
01101001,
01100101,
01011000,
01010100}

Snd

Off /
{ }

a) c)

CHANNELS3

CH17

CH28

H

Two*!Txt*!Off / { }

One*!Txt*!Off / { }

Txt*
!Off /

{ }

TV*
!Off /

{ }

Pic

SndOff
*!Off /

{ }

Ch1

Ch2

TelTxt
TXT4

[=0C

d)

[=
0CX

87654321 ssssssss+

87654321 ssssssss+

87654321 ssssssss+

87654321 ssssssss+

87654321 ssssssss+

87654321 ssssssss+

{10000000,
10000010,
10000001,
01101010,
01100110,
01101001,
01100101,
01011010,
01010110,
01011001,
01010101}

b)

[=0M

87654321 ssssssss

Fig. 1. TV remote controller: a) statechart diagram, b) set of all global states, c) set of all reachable

configurations, d) characteristic function [0CX

Definition 1 Statechart
A Statechart Z is a tuple consisting of the following elements:

()zzzzzzzzzzz sactiontlabelinoutTEhistorydefaulttypehrcS ,,,,,,,,,,
where:
1. S⊆zS is the finite non-empty set of states.
2. zS

z Shrc 2: →z is the hierarchy function, which for every state zSs ∈ assigns the set of
immediate sub-states of s.

3. { }ORANDStype zz ,: → is the state-type function.
4. zzz SSdefault →: is the default function.
5. { }falsetrueShistory zz ,: → is the Boolean history function.
6. E⊆zE is the finite set of events.
7. T⊆zT is the finite set of transition.
8. { }zzzz rootSTout \: → is a total function, called source function, such that () stoutz = if

transition t originates from state s.
9. { }zzzz rootSTin \: → is a total function, called target function, such that () stinz = if

transition t ends in s state.
10. For every transition zTt ∈ , the following predicate holds:

()() ()() stinparenttoutparent zzz == with () ORstypez = .

11. zz EE
zz Ttlabel 22: ×→ is the transition labelling function. The first component of ztlabel

is called ()ttriggerz , the second is called transition action and is denoted ()ttactionz .
12. zE

zz Ssaction 2: → is the state labelling function, which gives the set of events
associated to state s.

To use statecharts as a model for the specification of the digital controller it is necessary to
give a real world interpretation of such notions as event, set of events or label. The following
definition introduces the interpreted statecharts model. Based on this definition it is possible
to use the statechart diagram as a mean of the specification of the digital controller or reactive
systems.

Definition 2 Interpreted Statechart
An Interpreted Statechart is a statechart as in Definition 1 where:
1. zEX ⊆ is a set of events coming from the environment, zEY ⊆ is a set of events visible

to the outside world
2. An event is a named signal that is either present or absent. I is a set of all signals in the

system, both input, output and internal ones.
3. XIXinput →: where II X ⊆ – is a function assigning the event coming from the

environment to a signal. YIYoutput →: where IIY ⊆ – is a function assigning the event
visible to the environment to a signal and ∅=∩ YX II . Signals related to events coming
from the outside world and visible to the outside world are, respectively, the input and the
output of the system. The sets of input and output events are disjoint.

4. Component ()ttriggerz of the transition labelling function ztlabel called guard is a
Boolean expression generated by the following grammar:

g ::= true | false | i | !g | g + g | g * g | (g)
where Ii ∈ is a signal associated to event zEe ∈ . The evaluation of an event is either
true or false when the event is either present or absent. The operators !, + and *
correspond to the Boolean operators not, or and and, respectively.

5. Functions ()ttactionz and ()ssactionz lists a set of events zEa ⊆ associated with
transitions and states respectively, according to the following rule:

a ::= nil | b
b ::= i | b, b

where Ii ∈ is a signal associated to an event and “,” distinguishes two events in an action.

It is essential from a symbolic technique point of view to express the concept of the set of
states. The notion of characteristic function, well known in algebra theory, can be applied [2].

Definition 3 Characteristic function
A characteristic function AX of a set of elements UA ⊆ is a Boolean function

{ }1,0: →UX A defined as follows:

()


 ∈⇔

=
.0

,1
otherwise

Ax
xX A (1)

The characteristic function is calculated as a disjunction of all elements of A. Operations on
sets are in direct correspondence with operations on their characteristic functions. Thus:

() BABA XXX +=∪ ; () BABA XXX *=∩ ; () AA
XX = (2)

The characteristic function allows sets to be represented by BDDs. Fig. 1d presents the
characteristic function of all possible configurations [2].

3. MODELLING SYNCHRONOUS INTERPRETED STATECHART BY BOOLEAN
 EQUATIONS

The modelling of statecharts is based on the assumption that for every state zi Ss ∈ one flip-
flop is assigned, and then for every such flip-flop excitation function, as a Boolean
expression, is produced, Fig. 2. The excitation function δ evaluates to 1 when the flip-flop
associated with si will be active in the next iteration or remembers past activity, otherwise it
equals 0. A state is said to be active when every state belonging to the path, carried from it to
the root state, is active. Global state G of the system, called marking, is represented by the set
of all states of flip-flops. A configuration C is a set of all active states. The excitation function

()IS zi ,δ is defined on signals and current states of flip-flops. A detailed description of the
creation of the functions is beyond the scope of this paper and the method developed by the
author will be published soon.

Let Z be a synchronous interpreted statechart and Ω the set of all possible markings of Z. Each
marking of Z can be coded as a vector ()nnM µµµ ,,, 211 l=× where { }1,0∈iµ represents the
activity of flip-flop representing a state zi Ss ∈ and n is a number of all states in Sz. The set of
all reachable markings from default marking M0 is denoted [0M . Firing of a transition tk
transforms a marking Mi into marking Mj. This fact is denoted by [jki MtM . It is possible to
fire a set of enabled transitions in a given moment of discrete time. Any set of markings can
be represented using its characteristic function.

STATECHART SYSTEM

excitation
functions

output
functions

set of
flip-flops

Y
X

∆

clock
reset

signal
functions

Fig. 2. Statechart system model

By the association of the excitation function with a state, a direct application of FSM and
Petri Nets traversal algorithm can be used. The transition function in Fig. 2 Ω→Ω∆ : , is
defined as a functional vector of a Boolean function: () () ()[]ISISIS znzz ,,,,,: 21 δδδ l∆ ,
where ()IS zi ,δ is an excitation function of the state si flip-flop and I is the set of signals in
the system represented by their functions. In Fig. 1d symbol si denotes both a state in the
diagram and a variable of characteristic function. Boolean expressions related to transition
functions can be implemented by using topological information from the diagram.

4. SYMBOLIC STATES SPACE EXPLORATION OF STATECHARTS
Symbolic state space exploration techniques are widely used in the area of synthesis, testing,
and the verification of finite state systems. Coudert et al were the first to realise that Binary
Decision Diagram (BDDs) could be used to represent sets of states [4]. This led to the

formulation of an algorithm that traversed the State Transition Graph in breadth-first manner,
moving from a set of a set of states to the set of its fan-out states. In this approach a set of
states is represented by means of characteristic functions. The key operation required for
traversal is the computation of the range of a function, given a subset of its domain [2]. The
computational cost of these symbolic techniques depends on the cost of the operation
performed on the BDDs and does not depend on the number of states and transitions. For
example, from Fig. 1a BDD characteristic function for the set of all global states (Fig. 1b)
consists of 21 nodes, and characteristic function for the set of all configurations (Fig. 1c)
counts 20 nodes. The symbolic state exploration of statecharts relies on:
- association transition functions to states,
- association logic functions to signals,
- representation of Boolean function as BDDs,
- representation of sets of states using their characteristic functions,
- computation of a set of next states as an image of the state transition function on the

current state set for all input signals.

Starting from the default configuration and the set of signals, symbolic state exploration
methods enable the computation of the entire set of next states in one formal step. Burch et al
and Coudert et al were the first to independently propose the approach to the image
computation [4,5]. Two main methods are transition relation and transition function. The
latter is the method implemented by the author. The symbolic state space algorithm of
statechart Z is as follows:

symbolic_traversal_of_Statechart(Z, initial_marking) {

[0MX = current_marking = initial_marking;

while (current_marking != Ø) {
next_marking = image_computation(Z, current_marking);

current_marking = next_marking * [0MX ;

[0MX = current_marking + [0MX ;

}
}

Fig. 3. The symbolic traversal of Statecharts

The variables in italics represent characteristic functions of corresponding sets of
configurations. All logical variables are represented by BDDs. Several subsequent
configurations are simultaneously calculated using the characteristic function of current
configurations and transition functions. This computation is realised by the
image_computation function. The set of subsequent configurations is calculated from the
following equations:

()()[]()∏ =
′∃∃= n

i iixs xsmarkingcurrentsmarkingcurrentmarkingnext
1

,*_*__ δ� (3)

ssmarkingnextmarkingnext ←′= __ (4)

where s, s’, x denote the present state, next state and input signal respectively; s∃ and x∃
represent the existential quantification of the present state and signal variables; symbols �
and * represent logic operators XNOR and AND respectively; equation (4) means swapping
variables in expression.

Given the characteristic function of all reachable global states of a system, it is possible to
calculate the set of all configurations. As mentioned earlier in section 3, a state is said to be
active when every state belonging to the path, carried from it to the root state, is active. This

leads to the formulation of a state activating function. Let αi be a Boolean function
{ }1,0: →zi Sα which evaluates to 1 when state si is active. The generation of a set of all

configurations relies on the image computation of a characteristic function in transformation
by activating functions:

[[[()()[]()∏ =
′∃∃= n

i iMiMxsC xsXsXX
1

,**
000

α� (5)

[[ssXX CC ←′=
00

 (6)

The example in Fig. 1a describes the behaviour of a remote controller. The remote can be in
11 global states (Fig. 1b) which correspond to the set of 7 possible configurations (Fig. 1c).

5. CONCLUSION
A visual formalism proposed by David Harel can be effectively used to specify the behaviour
of digital controllers. Controllers specified in this way can subsequently be synthesised in
FPGA circuits. In this paper it has been shown that state space traversal techniques from FSM
and Petri nets theory can be efficiently used in the fields of statechart controllers design. The
presented issues are a matter of the author’s investigations. Within the framework of the
research, a software system called HiCoS has been developed, where presented algorithms
have been successfully implemented.

REFERENCES
[1] Adamski M., “SFC, Petri Nets and Application Specific Logic Controllers, Proc. of The

IEEE Int. Conf. on Systems, Man and Cybernetics San Diego, USA Nov. ‘98, ss 728-733
[2] K. Biliński, Application of Petri Nets in parallel controllers design, PhD. Thesis,

University of Bristol, Bristol, 1996
[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. Dill. “Sequential Circuit Verification

Using Symbolic Model Checking”, Proceedings of the 27th Design Automation
Conference, pp. 46-51, June 1990

[4] O. Coudert, C. Berthet, and J. C. Madre, “Verification of Sequential Machines Using
Boolean Functional Vectors”, IMEC-IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, pp. 111-128, November 1989

[5] A. Ghosh, S. Devadas, A. R. Newton, Sequential logic testing and verification, Kluwer
Academic Publisher, Boston 1992

[6] D. Harel, Statecharts, A Visual Formalism for Complex Systems, Science of Computer
Programming, No 8, North-Holland, 1987, pp. 231-274

[7] G. Łabiak, Implementacja sieci Statechart w reprogramowalnej strukturze FPGA. Mat. I
Krajowej Konf. Nauk. Reprogramowalne Układy Cyfrowe, Szczecin, pp.169-177 ‘98

[8] A. Magiollo-Schettini, M. Merro, Priorities in Statecharts, Diparamiento di Informatica,
Universita di Pisa, Corso Italia

[9] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, “Petri Net Analysis Using Boolean
Manipulation”, Proc. of 15th Int. Conference: Application and Theory of Petri Nets, Vol.
815 of Lecture Notes in Computer Science pp. 416-435, Springer Verlag June 1994

[10] M. Rausch B. H. Krogh, “Symbolic Verification of Stateflow Logic”, Proceedings of
the 4th Workshop on Discrete Event System, Cagliari, Italy, pp. 489-494 1998

[11] UML 1.3 Documentation, Rational Software Corp. ‘99, http:// www.rational.com/uml

