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Abstract. The FSM and Petri nets theories have elaborated many techniques and 
algorithms, which enable the employment of formal method in the fields of 
synthesis, testing and the verification. Many of them are based on symbolic state 
exploration. This paper focuses on the algorithm of the symbolic state exploration 
of controllers specified by means of statecharts. Statecharts are new technique for 
specifying behaviour of controllers, which, in comparison with FSM and Petri nets 
is enriched with notions of hierarchy, history and exception transitions. The paper 
presents the mathematical model of the diagram, its physical interpretation as a 
digital circuit and the characteristic function, which is the key notion in state 
exploration. 
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1. INTRODUCTION  
Statecharts are a visual formalism for the specification of reactive systems, which is based on 
the idea of enriching state-transition diagrams with notions of hierarchy, concurrency and 
broadcast communication [6,7,8,10]. It was invented as a visual formalism for complex 
systems by David Harel [7]. Today, as a part of UML technology, it is widely used in many 
fields of modern engineering [11]. The presented approach features such characteristics as 
Moore’s and Mealy’s automata, history and terminal states. There are many algorithms based 
on a State Transition Graph traversal for finite state machines, which have applications in the 
area of synthesis, test and verification [2,3,4,5,10]. It seems to be very promising to use well 
developed techniques from FSM and Petri net theory in the field of synthesis [1], testing and 
the verification of controllers specified by means of statechart diagrams. These considerations 
caused the elaboration of the new algorithms of symbolic state space exploration. 

2. SYNTAX AND DEFINITIONS 
Based on the formalism contained in [8], the following definition of syntax can be given. Let 
S be the infinite set of states, T the infinite set of transition, E the infinite set of events. 
Symbols l,,,,, 321 sssss ′  are used to range over S, l,,,,, 321 ttttt ′  to range over T, 

l,,,,, 321 eeeee ′  to range over E. 
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Fig. 1. TV remote controller: a) statechart diagram, b) set of all global states, c) set of all reachable 

configurations, d) characteristic function [ 0CX  

Definition 1 Statechart 
A Statechart Z is a tuple consisting of the following elements: 

( )zzzzzzzzzzz sactiontlabelinoutTEhistorydefaulttypehrcS ,,,,,,,,,,  
where: 
1. S⊆zS  is the finite non-empty set of states. 
2. zS

z Shrc 2: →z  is the hierarchy function, which for every state zSs ∈  assigns the set of 
immediate sub-states of s.  

3. { }ORANDStype zz ,: →  is the state-type function. 
4. zzz SSdefault →:  is the default function. 
5. { }falsetrueShistory zz ,: →  is the Boolean history function. 
6. E⊆zE  is the finite set of events. 
7. T⊆zT  is the finite set of transition. 
8. { }zzzz rootSTout \: →  is a total function, called source function, such that ( ) stoutz =  if 

transition t originates from state s.  
9. { }zzzz rootSTin \: →  is a total function, called target function, such that ( ) stinz =  if 

transition t ends in s state.  
10. For every transition zTt ∈ , the following predicate holds: 

( )( ) ( )( ) stinparenttoutparent zzz ==  with ( ) ORstypez = . 



11. zz EE
zz Ttlabel 22: ×→  is the transition labelling function. The first component of ztlabel  

is called ( )ttriggerz , the second is called transition action and is denoted ( )ttactionz . 
12. zE

zz Ssaction 2: →  is the state labelling function, which gives the set of events 
associated to state s. 

To use statecharts as a model for the specification of the digital controller it is necessary to 
give a real world interpretation of such notions as event, set of events or label. The following 
definition introduces the interpreted statecharts model. Based on this definition it is possible 
to use the statechart diagram as a mean of the specification of the digital controller or reactive 
systems. 

Definition 2 Interpreted Statechart 
An Interpreted Statechart is a statechart as in Definition 1 where: 
1. zEX ⊆  is a set of events coming from the environment, zEY ⊆  is a set of events visible 

to the outside world 
2. An event is a named signal that is either present or absent. I is a set of all signals in the 

system, both input, output and internal ones. 
3. XIXinput →:  where II X ⊆  – is a function assigning the event coming from the 

environment to a signal. YIYoutput →:  where IIY ⊆  – is a function assigning the event 
visible to the environment to a signal and ∅=∩ YX II . Signals related to events coming 
from the outside world and visible to the outside world are, respectively, the input and the 
output of the system. The sets of input and output events are disjoint. 

4. Component ( )ttriggerz  of the transition labelling function ztlabel  called guard is a 
Boolean expression generated by the following grammar: 

g ::= true | false | i | !g | g + g | g * g | (g)
where Ii ∈  is a signal associated to event zEe ∈ . The evaluation of an event is either 
true or false when the event is either present or absent. The operators !, + and * 
correspond to the Boolean operators not, or and and, respectively. 

5. Functions ( )ttactionz  and ( )ssactionz  lists a set of events zEa ⊆  associated with 
transitions and states respectively, according to the following rule: 

a ::= nil | b
b ::= i | b, b 

where Ii ∈  is a signal associated to an event and “,” distinguishes two events in an action. 

It is essential from a symbolic technique point of view to express the concept of the set of 
states. The notion of  characteristic function, well known in algebra theory, can be applied [2].   

Definition 3 Characteristic function 
A characteristic function AX  of a set of elements UA ⊆ is a Boolean function 

{ }1,0: →UX A  defined as follows: 

( )


 ∈⇔

=
.0

,1
otherwise

Ax
xX A  (1) 

The characteristic function is calculated as a disjunction of all elements of A. Operations on 
sets are in direct correspondence with operations on their characteristic functions. Thus: 

( ) BABA XXX +=∪ ; ( ) BABA XXX *=∩ ; ( ) AA
XX =  (2) 

The characteristic function allows sets to be represented by BDDs. Fig. 1d presents the 
characteristic function of all possible configurations [2]. 



3. MODELLING SYNCHRONOUS INTERPRETED STATECHART BY BOOLEAN 
 EQUATIONS 

The modelling of statecharts is based on the assumption that for every state zi Ss ∈  one flip-
flop is assigned, and then for every such flip-flop excitation function, as a Boolean 
expression, is produced, Fig. 2. The excitation function δ evaluates to 1 when the flip-flop 
associated with si will be active in the next iteration or remembers past activity, otherwise it 
equals 0. A state is said to be active when every state belonging to the path, carried from it to 
the root state, is active. Global state G of the system, called marking,  is represented by the set 
of all states of flip-flops. A configuration C is a set of all active states. The excitation function 

( )IS zi ,δ  is defined on signals and current states of  flip-flops. A detailed description of the 
creation of the functions is beyond the scope of this paper and the method developed by the 
author will be published soon.  

Let Z be a synchronous interpreted statechart and Ω the set of all possible markings of Z. Each 
marking of Z can be coded as a vector ( )nnM µµµ ,,, 211 l=×  where { }1,0∈iµ  represents the 
activity of flip-flop representing a state zi Ss ∈  and n is a number of all states in Sz. The set of 
all reachable markings from default marking M0 is denoted [ 0M . Firing of a transition tk 
transforms a marking Mi into marking Mj. This fact is denoted by [ jki MtM . It is possible to 
fire a set of enabled transitions in a given moment of discrete time. Any set of  markings can 
be represented using its characteristic function.  
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Fig. 2. Statechart system model 

By the association of the excitation function with a state, a direct application of FSM and 
Petri Nets traversal algorithm can be used. The transition function in Fig. 2 Ω→Ω∆ : , is 
defined as a functional vector of a Boolean function: ( ) ( ) ( )[ ]ISISIS znzz ,,,,,: 21 δδδ l∆ , 
where ( )IS zi ,δ  is an excitation function of the state si flip-flop and I is the set of signals in 
the system represented by their functions. In Fig. 1d  symbol si denotes both a state in the 
diagram and a variable of characteristic function. Boolean expressions related to transition 
functions can be implemented by using topological information from the diagram.  

4. SYMBOLIC STATES SPACE EXPLORATION OF STATECHARTS 
Symbolic state space exploration techniques are widely used in the area of synthesis, testing, 
and the verification of finite state systems. Coudert et al were the first to realise that Binary 
Decision Diagram (BDDs) could be used to represent sets of states [4]. This led to the 



formulation of an algorithm that traversed the State Transition Graph in breadth-first manner, 
moving from a set of a set of states to the set of its fan-out states. In this approach a set of 
states is represented by means of characteristic functions. The key operation required for 
traversal is the computation of the range of a function, given a subset of its domain [2]. The 
computational cost of these symbolic techniques depends on the cost of the operation 
performed on the BDDs and does not depend on the number of states and transitions. For 
example, from Fig. 1a BDD characteristic function for the set of all global states (Fig. 1b) 
consists of 21 nodes, and characteristic function for the set of all configurations (Fig. 1c) 
counts 20 nodes. The symbolic state exploration of statecharts relies on: 
- association transition functions to states,  
- association logic functions to signals, 
- representation of Boolean function as BDDs, 
- representation of sets of states using their characteristic functions, 
- computation of a set of next states as an image of the state transition function on the 

current state set for all input signals. 

Starting from the default configuration and the set of signals, symbolic state exploration 
methods enable the computation of the entire set of next states in one formal step. Burch et al 
and Coudert et al were the first to independently propose the approach to the image 
computation [4,5]. Two main methods are transition relation and transition function. The 
latter is the method implemented by the author. The symbolic state space algorithm of 
statechart Z is as follows: 

symbolic_traversal_of_Statechart(Z, initial_marking) {

[ 0MX  = current_marking = initial_marking;

while (current_marking != Ø) {
next_marking = image_computation(Z, current_marking);

current_marking = next_marking * [ 0MX ;

[ 0MX = current_marking + [ 0MX ;

}
}

Fig. 3. The symbolic traversal of Statecharts 

The variables in italics represent characteristic functions of corresponding sets of 
configurations. All logical variables are represented by BDDs. Several subsequent 
configurations are simultaneously calculated using the characteristic function of current 
configurations and transition functions. This computation is realised by the 
image_computation function. The set of subsequent configurations is calculated from the 
following equations:  

( )( )[ ]( )∏ =
′∃∃= n

i iixs xsmarkingcurrentsmarkingcurrentmarkingnext
1

,*_*__ δ�  (3) 

ssmarkingnextmarkingnext ←′= __  (4) 

where s, s’, x denote the present state, next state and input signal respectively; s∃  and x∃  
represent the existential quantification  of the present state and signal variables; symbols � 
and * represent logic operators XNOR and AND respectively; equation (4) means swapping 
variables in expression. 

Given the characteristic function of all reachable global states of a system, it is possible to 
calculate the set of all configurations. As mentioned earlier in section 3, a state is said to be 
active when every state belonging to the path, carried from it to the root state, is active. This 



leads to the formulation of a state activating function. Let αi be a Boolean function 
{ }1,0: →zi Sα  which evaluates to 1 when state si is active. The generation of a set of all 

configurations relies on the image computation of a characteristic function in transformation 
by activating functions: 

[ [ [ ( )( )[ ]( )∏ =
′∃∃= n

i iMiMxsC xsXsXX
1

,**
000

α�  (5) 

[ [ ssXX CC ←′=
00

 (6) 

The example in Fig. 1a describes the behaviour of a remote controller. The remote can be in 
11 global states (Fig. 1b) which correspond to the set of  7 possible configurations (Fig. 1c). 

5. CONCLUSION 
A visual formalism proposed by David Harel can be effectively used to specify the behaviour 
of digital controllers. Controllers specified in this way can subsequently be synthesised in 
FPGA circuits. In this paper it has been shown that state space traversal techniques from FSM 
and Petri nets theory can be efficiently used in the fields of statechart controllers design. The 
presented issues are a matter of the author’s investigations. Within the framework of the 
research, a software system called HiCoS has been developed, where presented algorithms 
have been successfully implemented.  
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