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Abstract. This work presents a method for obtaining fail-safe systems based in 
parity alternation from Petri net specifications. A fail-safe system is a system 
with adequate redundancy for detecting failures and preventing them. This 
method generates a VHDL description of a system from a Petri net or state 
diagram description. These results have relevance in the integration of access 
technologies to high speed telecommunication networks, where fail safe 
mechanisms are becoming an important concern. 
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1. Introduction 

This work uses the parity alternation method to provide fail-safe [1] [2] [3] characteristics to 
graphical specifications of the type state diagram or Petri net [4]. The starting point is the 
unsafe state diagram or Petri net specification from which a VHDL description of the 
equivalent fail-safe system is generated. To do that a program providing a graphical 
interface reads the specification and internally generates a state array from a binary structure 
characterising the specification. The array is transformed appropriately to obtain a fail-safe 
system and turn it into a VHDL description. A block diagram of the processes involved is 
shown in figure 1. 

2. Parity alternation method 

This work uses the parity alternation method to provide the fail-safe mechanism, as 
described in [1]. The method and the proof of equivalence between the safe and unsafe 
specifications, which are available to the reader in the references, is not the objective of this 
paper. However, it can be summarised in the following paragraph. 



 

  

The method consists of coding every state in a state diagram with a different parity respect 
to those contiguous states in the diagram. Every transition in the state diagram goes from a 
source state to a destination state with a different parity. Fail-safe means that if an error 
occurs and a transition between two states with the same parity has occurred, then the error 
can be detected and the system driven to a known ‘safe’ state where no harm can be done. If 
the system could correct the error and keep working, then it would be called fault-tolerant 
(which is not the case). The new diagram is equivalent in the sense that its behaviour is 
identical from an external point of view. 

3. Algorithm process 

 The initial structure from which all the rest derive is the starting state diagram. Figure 3a 
shows an example of a state diagram data structure for a Petri net. That information is 
stored in a structure formed by three object lists. The first is the list of places or states, the 
second is the list of transitions and the third is the list of the connections between places 
and transitions. The handling of the information is best achieved using an object oriented 
programming language. The hierarchy of the objects involved in the treatment of the 
specification is shown in figure 2, where objects in double boxes form the data structure, 
while the simple boxes are objects defined to inherit the properties provided by the 
programming language. 

Tlugar defines the places and Ttransicion the transitions in the Petri net. TVar_ES is 
dedicated to input/output signals. TPuntero and inherited objects are pointers that relate all 
the structure. TPetriNet contains, with the help of all the other definitions, the information 
of the whole Petri net. 

In the case of a state diagram, the information to store and the process to follow is 
simplified. The structure is first processed to obtain a state array, searching in the structure 
for every state its predecessor. This array is transformed as per [1] to get a new state array 
(see figure 1). This new state array is stored in a new class of objects from which the VHDL 
is generated. Since the process multiplies the number of states, it may be necessary to 
compress the information in memory. 
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Fig. 1.Block diagram of the proposed methods 



 

 

In the case of a Petri net, the process starts by transforming it in an equivalent state 
diagram, trying all the transitions between the places that can form a state, even if most will 
never happen. For a Petri net with 10 places, the equivalent state diagram can have at most 
2 to the power of 10 states. That will make a 1024x1024-state array that if necessary to 
duplicate in the fail-safe version will make 2048x2048, forcing a compression of the 
information. The compression algorithm is facilitated by the fact that most of the values of 
the array will be ‘0’s. 

The application program identifies whether it is working with a Petri net or a pure state 
diagram, but uses the same data structure. If there is a transition associated to several 
places, coming from or leading to the transition, the structure is processed as a Petri net. 
Petri nets are encoded using one-hot encoding. State diagrams are encoded using binary 
codification. The number of bits used to code each state in this last case follows:   

number_of_bits = exc( log2( number_of_states ) ) (1) 

where exc ( x ) means rounded up. 

Fig. 2. Data structure 

Fig. 3. Example



 

4. Examples 

Figure 3a shows a state diagram, list 1 its VHDL entity description, list 2 the unsafe version 
and list 3 the results obtained after been transformed by the algorithm into a fail-safe VHDL 
description (see figure 3b). Observe that it was necessary to duplicate the number of states 
to obtain the required parity alternation. 

REFERENCES 

[1] J.J.Rodríguez Andina, J.Álvarez y E.Mandado, “Design of safety systems using Field 
Programmable Gate Arrays”, FPL’94 – 4th International Workshop on Field Programmable 
Logic and Applications, Springer-Verlag, ISBN 3-540-58419-6, Praga 94. 

[2] J.J.Rodríguez Andina, S.Fernández y E.Mandado, “Implementation of logic controllers 
with concurrent fault detection capabilities in PLDs”, , IOLTW’96 – 2nd IEEE International 
On-Line Testing Workshop, St. Jean-de-Luz 96. 

[3] J.J. Rodriguez Andina, Santiago Fernandez and Enrique Mandado, "Design and 
Validation of Fail-Safe FSMs Using Regular Structures", Proceedings of the XII Design of 
Circuits and Integrated Systems Conference - DCIS'97, pp. 131-136. Sevilla, November 18-
21, 1997. 

[4] Zurawski, R., M.C. Zhou. "Petri Nets and Industrial Applications: a Tutorial". IEEE 
Trans. on Industrial Electronics, Dec. 1994. 

ACKNOWLEDGEMENTS 

This work was financed by the European Commission and the Comisión Interministerial de 
Ciencia y Tecnología (Spain) through research grant TIC 1FD97-2248-C02-02 in 
collaboration with the company Versaware S.L. (Vigo, Spain). 



 

List 1 

 

 
-- Entity description of Petri net example 
Entity Example is   
Port (     
clk: In std_logic;     
INIT: In Std_logic;     
B, C, D, E: In Std_logic;     
X,Y: Out Std_logic  ); 
end Example; 
 

 

 

List 2 

 

 
-- Unsafe architecture 
architecture unsafe of Example is 
--Biestables for detecting transition activated inputs 
Signal  ant_B, ant_C:  Std_logic; 
-- Current state register 
Signal  current_state: Integer range 0 to 3; 
  
begin 
-- Descriptions of the transitions  
transic: process 
begin -- Only with a positive transition in clk   
wait until (clk'event and clk='1');   
if INIT = '0' then current_state <= 2 ;  --Init. signal 
else    
case current_state is 
-- state 0        
when 0 =>  current_state <= 2 ; 
 
-- state 1        
when 1 => if C='0' then current_state <= 0 ; end if; 
 
-- state 2       
when 2 =>         
if ( (B='1') and (ant_B='0') ) or ( (C='0') and (ant_C='1') ) 
then  current_state <= 3 ;  end if;         
if ( B='0' ) or ( D='1' ) then current_state <= 1;  end if; 
 
-- state 3        
when 3 =>  if ( (B='1') and (C='0') ) or ( (E='1') and (C='1') 
)  
then  current_state <= 2 ;   end if;        
 
when others => null;     
 
end case;   
end if; 
end process; 
 
-- Description of the outputs  
salidas: process 
begin   
wait until clk'event and clk='1'; 
case current_state is        
when 0 =>  Y <= '0';       
when 1 =>  X <= '1';        
when others => null;   
end case; 
end process; 
 
-- Description of transition activated inputs  
flancos: process 
begin -- Only with a positive transition in clk   
wait until clk'event and clk='1';   
ant_B <= B;  ant_C <= C; 
end process;  
end unsafe; 
 
 



 

 
List 3 
 
 
architecture safe of Example is 
--Biestables for detecting transition activated inputs 
Signal  ant_B, ant_C:  Std_logic; 
-- Current state register 
Signal  current_state: Integer range 0 to 7; 
 
begin 
 -- Description of the transitions  
transic: process 
begin -- Only with a positive transition in clk   
wait until clk'event and clk='1';   
 
if INIT = '0' then current_state <= 2;  -- Init. signal 
else  
case current_state is 
 
-- state 0        
when 0 =>  current_state <= 2 ; 
 
-- state 1       
when 1 => if C='0'then current_state <= 0 ; 
else current_state <= 5 ;   end if; 
 
-- state 2        
when 2 =>         
if ((B='1') and (ant_B='0')) or ((C='0') and (ant_C='1')) 
then current_state <= 3 ;         
elsif (B='0') or (D='1')then current_state <= 5 ;         
else  current_state <= 6 ;  end if; 
 
-- state 3       
when 3 => if((B='1') and(C='0')) or((E='1') and(C='1')) 
then current_state <= 2 ;         
else current_state <= 7 ;    end if; 
 
-- state 4       
when 4 =>  current_state <= 6 ; 
 
-- state 5       
when 5 => if C='0' then current_state <= 4 ;        
else current_state <= 1 ;  end if; 
 
-- state 6       
when 6 =>   if(B='0') or(D='1') then current_state <= 1 ;      
elsif ( (B='1') and (ant_B='0') ) or ((C='0') and (ant_C='1') 
) then current_state <= 7 ;         
else current_state <= 2 ;  end if; 
 
-- state 7        
when 7 =>  if ( (B='1') and(C='0') ) or( (E='1') and(C='1') ) 
then current_state <= 6 ;  
else current_state <= 3 ;   end if;       
  
when others => null;    
end case;   
end if; 
end process; 
 
 -- Descriptions of the outputs 
 salidas : process 
begin  --Only with a positive transition in clk  
 wait until clk'event and clk='1';   
case current_state is        
when 0 =>  Y <= '0';        
when 1 =>  X <= '1';        
when 4 =>  Y <= '0';        

when 5 =>  X <= '1';       
when others => null;   
end case; 
end process;  
 
-- Description of transition activated inputs  
flancos: process 
begin 
-- Only with a positive transition in clk   
wait until clk'event and clk='1';  
 ant_B <= B;  ant_C <= C; 
end process; 
  
end safe; 

 
 
  


