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Abstract. A model of sequent automaton is proposed for description of digital 
systems behavior in the space of Boolean variables: input, output and inner ones. 
The rules of its equivalence transformations are formulated, leading to several 
canonical forms. Simple sequent automaton is introduced, represented in matrix 
form, which is intended for easing PLA implementation of the automaton. The 
problem of automata correctness is discussed.  
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1. EVENTS IN THE BOOLEAN SPACE  
Many complex engineering systems may be regarded as dynamic digital systems working in 
some surroundings. Very often their behavior can be expressed in terms of Boolean variables 
taking their values from the set {0, 1} and defining in such a way the states of individual 
elements of the system. Usually, when a control system is constructed to ensure the proper 
interaction between system components, the set W of all variables is divided into three classes: 
X, Y and Z. Input variables (X) present information received from sensors situated in 
surroundings or in the system itself; output variables (Y), calculated inside the system, are 
intended for control purposes and used by executing elements; and inner variables (Z) may 
play both roles and could be considered as memory of the system. 

2|W| different combinations of values of variables from W constitute the Boolean space over W  
(|W| denotes the cardinality of set W). This Boolean space is designated below as BS(W). Each 
of its elements may be regarded as a global state of the system, or as the corresponding event 
that occurs when the system enters that state. Let us call such an event elementary. In the same 
way, the elements of Boolean spaces over X, Y and Z may be regarded as input states, output 
states and inner states, as well as corresponding events.  

Besides that far more events of other types may be introduced into consideration. Generally, 
every subset of BS(W) may be interpreted as an event which occurs when some element from 
BS(W) is realized, i. e. when the variables from W take the corresponding combination of 
values. In this general case the event is called complicated and could be presented by the 
characteristic Boolean function of the regarded subset. So, the number of complicated events 
coincides with the number of arbitrary Boolean functions of |W| variables.  



 

From the practical point of view, the following two types of events deserve special 
consideration: basic events and simple events. 

Basic events are represented by literals - symbols of variables or their negations - and occur 
when these variables take corresponding values. For example, basic event a occurs when 
variable a equals 1, and event c' occurs when  c = 0. The number of different basic events is 
2|W|. 

Simple events are represented by elementary conjunctions, and occur when these conjunctions 
take value 1. For example, event ab'f occurs when  a = 1, b = 0 and  f  = 1. The number of 
different simple events is 3|W|, including trivial event, when values of all variables are 
arbitrary. 

Evidently, the class of simple events absorbs elementary events and basic events. So, 
elementary conjunction ki is the general form for representation of events i of all three 
introduced types; it contains symbols of all variables in the case of an elementary event and 
only one symbol when a basic event is regarded. One event i can realize another j - it means 
that the latter always comes when the former comes. It follows from the definitions, that it 
occurs when conjunction ki implicates conjunction kj , in other words, when kj can be obtained 
from ki  by deleting some of its letters. For example, event abc'de' realizes events ac'd and 
bc'e', event ac'd realizes basic events a, c' and d, etc. Hence, several different events can occur 
simultaneously, if only they are not orthogonal. 

2. SEQUENT AUTOMATON  
The behavior of a digital system is defined by the rules of changing its state. A standard form 
for describing such rules was suggested by the well-developed classical theory of finite 
automata considering relations between the sets of input, inner and output states. Unluckily, 
that model becomes inapplicable for digital systems with many Boolean variables - hundreds 
and more. That is why a new formal model was proposed in [3-5] called sequent automaton. It 
takes into account the fact, that interaction between variables from W takes place within 
comparatively small groups and has functional character. And it suggests means for describing 
both the control unit of the system and the object of control - the body of the system. 

Sequent automaton is a logical dynamic model defined formally as a system S of sequents si. 
Each sequent si has the form fi |- ki  and defines the "cause-effect" relation between some 
complicated event represented by Boolean function fi and a simple event ki represented by 
conjunction term ki ; |- is the symbol of the considered relation. Suppose function fi  is given in 
disjunctive normal form (DNF). 

The expression fi |- ki  is interpreted as follows: if at some moment function fi  takes value 1, 
then immediately after that ki must also become equal to 1 - by that the values of all variables 
in ki are defined uniquely. In such a way a separate sequent can present a definite demand to 
the behavior of the discrete system, and the set S as a whole - the totality of such demands. 

Note, that the variables from X may participate only in fi and can carry information got from 
some sensors, the variables from Y present control signals and participate only in ki, and the 
variables from Z are feed-back variables which can be presented both in fi and ki.  

The explication of "immediately after that" depends greatly on the accepted time model. It is 
different for two kinds of behavior interpretation, which could be used for sequent automata, 
both of practical interest: synchronous and asynchronous.  



 

We shall interpret system S mostly as a synchronous sequent automaton. In this case the 
behavior of the automaton is regarded in discrete time t - the sequence of moments 
to , t1 , t2 , ...,  tl , tl+1, ... . At a current transition from tl  to tl+1 there are executed 
simultaneously all such sequents si for which fi = 1 and as a result all corresponding 
conjunctions ki turn to 1 (all their factors take value 1). In that case "immediately after that" 
means "at the next moment".  

Suppose that if some of inner and output variables are absent in conjunctions ki of executed 
sequents, they preserve their previous values. That is why the regarded sequent automata are 
called inertial [4]. Hence a new state of the sequent automaton (the set of values of inner 
variables) is defined uniquely, as well as new values of output variables.  

Sometimes the initial state of the automaton is fixed (for moment to), then the automaton is 
called initialized. The initial state uniquely determines the set R of all reachable states. When 
computing it, it is supposed that all input variables are free, i. e. by any moment tl they could 
take arbitrary combinations of values. Let us represent set R by characteristic Boolean 
function ϕ of inner variables which takes value 1 on the elements from R. In the case of non-
initialized automata it is reasonable to consider that ϕ = 1.  

Under asynchronous interpretation the behavior of sequent automaton is regarded in 
continuous time. There appear a lot of more hard problems of their analysis connected with 
races between variables presented in terms ki, especially when providing the automaton with 
important quality of correctness. 

3. EQUIVALENCE TRANSFORMATIONS AND CANONICAL FORMS  
Let us say that sequent si is satisfied in some engineering system if event fi is always followed 
by event ki. And sequent si realizes sequent sj if the latter is satisfied automatically when the 
former is satisfied.  

Affirmation 1. Sequent si realizes sequent sj if and only if fj ⇒ fi  and  ki ⇒ kj , where  ⇒ is 
the symbol of formal implication. 

For instance, sequent ab ∨ c |- uv' realizes sequent abc |- u. Indeed, abc ⇒ ab ∨ c and uv' ⇒ u.  

If two sequents si and sj realize each other, they are equivalent. In that case fi = fj and ki = kj . 

The relations of realization and equivalence can be extended onto sequent automata S and T. If 
S includes in some form all demands contained in T, S realizes T. If two automata realize each 
other, they are equivalent.  

These relations are easily defined for elementary sequent automata Se and Te, which consist of 
elementary sequents. Left part of such a sequent presents an elementary event in BS(X ∪ Z), 
right part presents a basic event (for example, ab'cde' |- q, where it is supposed that  X ∪ Z = 
{a, b, c, d, e}. Se realizes Te if it contains all sequents contained in Te. Se and Te are equivalent 
if they contain the same sequents. It follows from here that elementary sequent automaton is a 
canonical form.  

There exist two basic equivalencies formulated as follows. 

Affirmation 2. Sequent fi ∨ fj |- k is equivalent to the pair of sequents fi  |- k and fj |- k. 

Affirmation 3. Sequent f  |- ki kj is equivalent to the pair of sequents f  |- ki  and  f  |- kj. 



 

According to these affirmations any sequent can be decomposed into a series of elementary 
sequents (which cannot be decomposed further). That transformation enables to compare any 
sequent automata checking them for binary relations of realization and equivalence. 

Affirmations 2 and 3 can be used for equivalence transformations of sequent automata by 
elementary operations of two kinds: splitting sequents (changing one sequent for a pair) and 
merging sequents (changing a pair of sequents for one, if possible). 

Elementary sequent automaton is useful for theoretical constructions but could turn out quite 
non-economical when regarding some real control systems. Therefore two more canonical 
forms are introduced.  

The point sequent automaton Sp consists of sequents in which all left parts represent 
elementary events (in BS(X ∪ Z)) and are different. The corresponding right parts show the 
responses. This form can be obtained from elementary sequent automaton Se by merging 
sequents with equal left parts.  

The functional sequent automaton Sf consists of sequents in which all right parts represent 
basic events in BS(Z ∪ Y) and are different. So the sequents have the form  fi

1 |- ui or fi
0 |- ui', 

where variables ui ∈ Z ∪ Y, and the corresponding left parts are interpreted as switching 
functions for them: on-functions fi

1 and off-functions fi
0. Sf can be obtained from Se by 

merging sequents with equal right parts.  

Note that both forms Sp and Sf can be obtained also from arbitrary sequent automata by 
disjunctive decomposition of the left parts of the sequents (for the point sequent automaton) or 
conjunctive decomposition of the right parts (for functional one). 

4. SIMPLE SEQUENT AUTOMATON  
Consider now a special important type of sequent automata - a simple sequent automaton. It is 
defined formally as a system S of simple sequents - expressions ki′ |- ki″  where both ki′  and 
ki″ are elementary conjunctions representing simple events. This form has a convenient matrix 
representation, inasmuch as every elementary conjunction can be presented as a ternary vector. 

Let us represent any simple sequent automaton by two ternary matrices: a cause matrix A and 
an effect matrix B. They have equal number of rows indicating simple sequents, and their 
columns correspond to Boolean variables - input, output and inner ones.  

Example. The two ternary matrices 

          a  b  c  p  q  r                   p  q  r  u  v  w  z 

          1  −  −  − 0  −            −  1  −  −  1  −  1 

          −  0  1  1  −  −                  −  −  0  1  −  0  − 

A  =   0  1  −  −  1  1   ,     ΒΒΒΒ  =   1  0  −  −  1  −  0  
          −  −  0  −  −  0                  0  −  −  −  −  1  − 

          −  −  0  1  0  −                   −  1  1  0  −  1  −  

represent the following system of simple sequents regarded as a simple sequent automaton: 
      aq′′′′ |- qvz ,  

     b′′′′cp |- r′′′′uw′′′′ , 
              a′bqr |- pq′vz′ , 
                  c′′′′r′′′′  |- p′′′′w , 
                  c′pq′ |- qru′w .     



 

Here X = {a, b, c}, Y = {u, v, w, z}, Z = {p, q, r}. 

It has been noted [1] that, to a certain extent, simple sequents resemble the sequents of the 
theory of logical inference, which were introduced by Gentzen [2]. The latter ones are defined 
as expressions   

A1, …, An → B1, …, Bm   

that connect arbitrary logic formulae  A1, …, An, B1, …, Bm  and are interpreted as implications   

A1 ∧ … ∧ An → B1 ∨ … ∨ Bm . 

The main difference is that any simple sequent ki′ |- ki″ presents not pure logical but cause-
effect relation: event ki″ is generated by event ki′  and appears after it, so we cannot mix 
variables from ki′  with variables from ki″ .  

But sometimes we may discard this time aspect and consider terms ki′  and  ki″ on the same 
level, for instance, when looking for stable states of the regarded system. In that case sequent  
ki′ |- ki″  could be formally changed for implication  ki′ → ki″  and subjected further to Boolean 
transformations, leading to equivalent sets of Gentzen sequents and corresponding sets of 
standard disjuncts usual for theory of logical inference. 

For example, in such a way the system of simple sequents 

   ab |- cd',   a'b' |- cd,   a'b |- c 

may be transformed into the following system of disjuncts: 

   a ∨ b ∨ d,   a' ∨ b' ∨ d',   a' ∨ c' ∨ d,   b ∨ c' ∨ d'. 

5. APPLICATION IN LOGIC DESIGN 
The model of simple sequent automaton is rather close to the well-known technique of 

disjunctive normal forms (DNF) used for hardware implementation of systems of Boolean 
functions [6]. Indeed, each row of matrix A may be regarded as a conjunctive term (product), 
and each column in B defines DNFs for two switching functions of the corresponding output 
or inner variable: 1s indicate terms entering ON-functions, while 0s indicate terms which 
enter OFF-functions. Note, that these DNFs can be easily obtained by transforming the 
regarded automaton into Sf-form and changing after that expressions fi

1|- ui for ui
1= fi

1 and fi
0|-

ui' for ui
0= fi

0. For the same example 

p1= a'bqr,  p0 = c'r ';    q1 = aq' ∨ c'pq', q0 = a'bqr ;     r1 = c'pq', r0 = b'cp ;  
u1 = b'cp, u0 = c'pq' ;     v1 = aq' ∨ a'bqr ;       w1 = c'r' ∨ c'pq', w0 = b'cp ; 
z1 = aq',    z0 = a'bqr . 

It is seen from here that the problem of constructing a simple sequent automaton with 
minimum number of rows is similar to the minimization of a system of Boolean functions in 
the class of DNFs known as a hard combinatorial problem. An approach to its solving was 
suggested in [7, 8]. 

The considered model turned out to be especially convenient for representation of 
programmable logic arrays (PLA) with memory on RS-flip-flops. It is used also in methods of 
automaton implementation of parallel algorithms for logical control described by expressions 
in PRALU [11]. 

Consider a simple sequent automaton shown in the above example. It is implemented by 
a PLA represented below. It has three inputs (a, b, c) supplied with inverters (NOT-elements) 
and four outputs (u, v, w, z) supplied with RS-flip-flops. So its input and output lines are 



 

doubled. The six input lines are intersecting with five inner ones, and at some points of 
intersection transistors are placed. Their disposition can be presented by a Boolean matrix 
easily obtained from matrix A, and determines the AND-stage of the PLA. In a similar way 
the OR-stage of the PLA is found from matrix B and realized on the intersection of inner lines 
with 14 output ones. 
 

Figure 1. PLA implementation of a sequent automaton 

6. CHECKING FOR CORRECTNESS 
In general, correctness is a quality of objects of some type, defined as the sum of several 

properties, which are considered reasonable and necessary [10]. 
Let us enumerate such properties first for synchronous sequent automata. 
Evidently, for any sequent si which carries some information inequalities fi ≠ 0 and ki ≠ 1 

should hold, to avoid trivial sequents. 
Sequents si and sj are called parallel if they could be executed simultaneously. A 

necessary and sufficient condition of parallelism for non-initialized automaton is relation 
fi ∧ fj ≠ 0, for initialized - relation fi ∧ fj ∧ ϕ ≠ 0. 

First of all, any sequent automaton should be consistent, that is very important. That 
means that for any parallel sequents si and sj relation ki ∧ kj ≠ 0 must hold. Evidently, this 
condition is necessary, inasmuch as by its violation there exists some variable that must take 
two different values which is impossible. 

The second quality is not so necessary for sequent automata as the first one, but is also 
useful. It is irredundancy. A system S is irredundant if it is impossible to delete from it some 
sequent or if only a literal from a sequent without violating the functional properties of the 
system. For example, it should not have "non-reachable" sequents, such si for which 
fi  ∧ ϕ = 0. 
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It is rather easy to check a simple sequent automaton for consistency. An automaton 
represented by ternary matrices A and B is obviously consistent if for any orthogonal rows in 
matrix B the corresponding rows of matrix A are also orthogonal. Note that this condition is 
satisfied in Example. 

One more useful quality called persistency is very important for asynchronous sequent 
automata. To check them for this quality it is convenient to deal with the functional canonical 
form.  

The point is that several sequents can be executed simultaneously and if the sequent 
automaton is asynchronous, these sequents (called parallel) could compete - the so called race 
could take place. The automaton is persistent if the execution of one of the parallel sequents 
does not destroy the conditions for executing other ones.  
 
Affirmation 4. In a persistent asynchronous sequent automaton for any pair of parallel 
sequents  

 fi
1 |- ui  and  fj

1 |- uj , 
 fi

0 |- ui'  and  fj
1 |- uj , 

 fi
1 |- ui  and  fj

0 |- uj' , 
 fi

0 |- ui'  and  fj
0 |- uj' 

the corresponding relation should hold: 

 fi
1 fj

1 : ui' uj'  ⇒ (fi
1: ui' uj ) (fj

1 : ui uj'), 
  fi

0 fj
1 : ui uj'  ⇒ (fi

0: ui uj ) (fj
1 : ui' uj'), 

fi
1 fj

0 : ui' uj  ⇒ (fi
1: ui' uj' ) (fj

0 : ui uj), 
fi

0 fj
0 : ui uj  ⇒ (fi

0: ui uj' ) (fj
0 : ui' uj), 

 
where expression f : k means the result of substitution those variables of function  f  which 
enter elementary conjunction k for the values satisfying equation  k = 1. 
 
The proof of this affirmation can be found in [9]. 
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