
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

SEQUENT MODEL FOR REPRESENTATION OF
DIGITAL SYSTEMS BEHAVIOR

Arkadij ZAKREVSKIJ

Institute of Engineering Cybernetics NAS B, Surganov Str. 6, 220012, Minsk, Belarus
e-mail: zakr@newman.bas-net.by

Abstract. A model of sequent automaton is proposed for description of digital
systems behavior in the space of Boolean variables: input, output and inner ones.
The rules of its equivalence transformations are formulated, leading to several
canonical forms. Simple sequent automaton is introduced, represented in matrix
form, which is intended for easing PLA implementation of the automaton. The
problem of automata correctness is discussed.

Key Words. Digital system behavior, Boolean space of events, sequent automaton,
canonical forms, checking for correctness, PLA implementation

1. EVENTS IN THE BOOLEAN SPACE
Many complex engineering systems may be regarded as dynamic digital systems working in
some surroundings. Very often their behavior can be expressed in terms of Boolean variables
taking their values from the set {0, 1} and defining in such a way the states of individual
elements of the system. Usually, when a control system is constructed to ensure the proper
interaction between system components, the set W of all variables is divided into three classes:
X, Y and Z. Input variables (X) present information received from sensors situated in
surroundings or in the system itself; output variables (Y), calculated inside the system, are
intended for control purposes and used by executing elements; and inner variables (Z) may
play both roles and could be considered as memory of the system.

2|W| different combinations of values of variables from W constitute the Boolean space over W
(|W| denotes the cardinality of set W). This Boolean space is designated below as BS(W). Each
of its elements may be regarded as a global state of the system, or as the corresponding event
that occurs when the system enters that state. Let us call such an event elementary. In the same
way, the elements of Boolean spaces over X, Y and Z may be regarded as input states, output
states and inner states, as well as corresponding events.

Besides that far more events of other types may be introduced into consideration. Generally,
every subset of BS(W) may be interpreted as an event which occurs when some element from
BS(W) is realized, i. e. when the variables from W take the corresponding combination of
values. In this general case the event is called complicated and could be presented by the
characteristic Boolean function of the regarded subset. So, the number of complicated events
coincides with the number of arbitrary Boolean functions of |W| variables.

From the practical point of view, the following two types of events deserve special
consideration: basic events and simple events.

Basic events are represented by literals - symbols of variables or their negations - and occur
when these variables take corresponding values. For example, basic event a occurs when
variable a equals 1, and event c' occurs when c = 0. The number of different basic events is
2|W|.

Simple events are represented by elementary conjunctions, and occur when these conjunctions
take value 1. For example, event ab'f occurs when a = 1, b = 0 and f = 1. The number of
different simple events is 3|W|, including trivial event, when values of all variables are
arbitrary.

Evidently, the class of simple events absorbs elementary events and basic events. So,
elementary conjunction ki is the general form for representation of events i of all three
introduced types; it contains symbols of all variables in the case of an elementary event and
only one symbol when a basic event is regarded. One event i can realize another j - it means
that the latter always comes when the former comes. It follows from the definitions, that it
occurs when conjunction ki implicates conjunction kj , in other words, when kj can be obtained
from ki by deleting some of its letters. For example, event abc'de' realizes events ac'd and
bc'e', event ac'd realizes basic events a, c' and d, etc. Hence, several different events can occur
simultaneously, if only they are not orthogonal.

2. SEQUENT AUTOMATON
The behavior of a digital system is defined by the rules of changing its state. A standard form
for describing such rules was suggested by the well-developed classical theory of finite
automata considering relations between the sets of input, inner and output states. Unluckily,
that model becomes inapplicable for digital systems with many Boolean variables - hundreds
and more. That is why a new formal model was proposed in [3-5] called sequent automaton. It
takes into account the fact, that interaction between variables from W takes place within
comparatively small groups and has functional character. And it suggests means for describing
both the control unit of the system and the object of control - the body of the system.

Sequent automaton is a logical dynamic model defined formally as a system S of sequents si.
Each sequent si has the form fi |- ki and defines the "cause-effect" relation between some
complicated event represented by Boolean function fi and a simple event ki represented by
conjunction term ki ; |- is the symbol of the considered relation. Suppose function fi is given in
disjunctive normal form (DNF).

The expression fi |- ki is interpreted as follows: if at some moment function fi takes value 1,
then immediately after that ki must also become equal to 1 - by that the values of all variables
in ki are defined uniquely. In such a way a separate sequent can present a definite demand to
the behavior of the discrete system, and the set S as a whole - the totality of such demands.

Note, that the variables from X may participate only in fi and can carry information got from
some sensors, the variables from Y present control signals and participate only in ki, and the
variables from Z are feed-back variables which can be presented both in fi and ki.

The explication of "immediately after that" depends greatly on the accepted time model. It is
different for two kinds of behavior interpretation, which could be used for sequent automata,
both of practical interest: synchronous and asynchronous.

We shall interpret system S mostly as a synchronous sequent automaton. In this case the
behavior of the automaton is regarded in discrete time t - the sequence of moments
to , t1 , t2 , ..., tl , tl+1, At a current transition from tl to tl+1 there are executed
simultaneously all such sequents si for which fi = 1 and as a result all corresponding
conjunctions ki turn to 1 (all their factors take value 1). In that case "immediately after that"
means "at the next moment".

Suppose that if some of inner and output variables are absent in conjunctions ki of executed
sequents, they preserve their previous values. That is why the regarded sequent automata are
called inertial [4]. Hence a new state of the sequent automaton (the set of values of inner
variables) is defined uniquely, as well as new values of output variables.

Sometimes the initial state of the automaton is fixed (for moment to), then the automaton is
called initialized. The initial state uniquely determines the set R of all reachable states. When
computing it, it is supposed that all input variables are free, i. e. by any moment tl they could
take arbitrary combinations of values. Let us represent set R by characteristic Boolean
function ϕ of inner variables which takes value 1 on the elements from R. In the case of non-
initialized automata it is reasonable to consider that ϕ = 1.

Under asynchronous interpretation the behavior of sequent automaton is regarded in
continuous time. There appear a lot of more hard problems of their analysis connected with
races between variables presented in terms ki, especially when providing the automaton with
important quality of correctness.

3. EQUIVALENCE TRANSFORMATIONS AND CANONICAL FORMS
Let us say that sequent si is satisfied in some engineering system if event fi is always followed
by event ki. And sequent si realizes sequent sj if the latter is satisfied automatically when the
former is satisfied.

Affirmation 1. Sequent si realizes sequent sj if and only if fj ⇒ fi and ki ⇒ kj , where ⇒ is
the symbol of formal implication.

For instance, sequent ab ∨ c |- uv' realizes sequent abc |- u. Indeed, abc ⇒ ab ∨ c and uv' ⇒ u.

If two sequents si and sj realize each other, they are equivalent. In that case fi = fj and ki = kj .

The relations of realization and equivalence can be extended onto sequent automata S and T. If
S includes in some form all demands contained in T, S realizes T. If two automata realize each
other, they are equivalent.

These relations are easily defined for elementary sequent automata Se and Te, which consist of
elementary sequents. Left part of such a sequent presents an elementary event in BS(X ∪ Z),
right part presents a basic event (for example, ab'cde' |- q, where it is supposed that X ∪ Z =
{a, b, c, d, e}. Se realizes Te if it contains all sequents contained in Te. Se and Te are equivalent
if they contain the same sequents. It follows from here that elementary sequent automaton is a
canonical form.

There exist two basic equivalencies formulated as follows.

Affirmation 2. Sequent fi ∨ fj |- k is equivalent to the pair of sequents fi |- k and fj |- k.

Affirmation 3. Sequent f |- ki kj is equivalent to the pair of sequents f |- ki and f |- kj.

According to these affirmations any sequent can be decomposed into a series of elementary
sequents (which cannot be decomposed further). That transformation enables to compare any
sequent automata checking them for binary relations of realization and equivalence.

Affirmations 2 and 3 can be used for equivalence transformations of sequent automata by
elementary operations of two kinds: splitting sequents (changing one sequent for a pair) and
merging sequents (changing a pair of sequents for one, if possible).

Elementary sequent automaton is useful for theoretical constructions but could turn out quite
non-economical when regarding some real control systems. Therefore two more canonical
forms are introduced.

The point sequent automaton Sp consists of sequents in which all left parts represent
elementary events (in BS(X ∪ Z)) and are different. The corresponding right parts show the
responses. This form can be obtained from elementary sequent automaton Se by merging
sequents with equal left parts.

The functional sequent automaton Sf consists of sequents in which all right parts represent
basic events in BS(Z ∪ Y) and are different. So the sequents have the form fi

1 |- ui or fi
0 |- ui',

where variables ui ∈ Z ∪ Y, and the corresponding left parts are interpreted as switching
functions for them: on-functions fi

1 and off-functions fi
0. Sf can be obtained from Se by

merging sequents with equal right parts.

Note that both forms Sp and Sf can be obtained also from arbitrary sequent automata by
disjunctive decomposition of the left parts of the sequents (for the point sequent automaton) or
conjunctive decomposition of the right parts (for functional one).

4. SIMPLE SEQUENT AUTOMATON
Consider now a special important type of sequent automata - a simple sequent automaton. It is
defined formally as a system S of simple sequents - expressions ki′ |- ki″ where both ki′ and
ki″ are elementary conjunctions representing simple events. This form has a convenient matrix
representation, inasmuch as every elementary conjunction can be presented as a ternary vector.

Let us represent any simple sequent automaton by two ternary matrices: a cause matrix A and
an effect matrix B. They have equal number of rows indicating simple sequents, and their
columns correspond to Boolean variables - input, output and inner ones.

Example. The two ternary matrices

 a b c p q r p q r u v w z

 1 − − − 0 − − 1 − − 1 − 1

 − 0 1 1 − − − − 0 1 − 0 −

A = 0 1 − − 1 1 , ΒΒΒΒ = 1 0 − − 1 − 0
 − − 0 − − 0 0 − − − − 1 −

 − − 0 1 0 − − 1 1 0 − 1 −

represent the following system of simple sequents regarded as a simple sequent automaton:
 aq′′′′ |- qvz ,

 b′′′′cp |- r′′′′uw′′′′ ,
 a′bqr |- pq′vz′ ,
 c′′′′r′′′′ |- p′′′′w ,
 c′pq′ |- qru′w .

Here X = {a, b, c}, Y = {u, v, w, z}, Z = {p, q, r}.

It has been noted [1] that, to a certain extent, simple sequents resemble the sequents of the
theory of logical inference, which were introduced by Gentzen [2]. The latter ones are defined
as expressions

A1, …, An → B1, …, Bm

that connect arbitrary logic formulae A1, …, An, B1, …, Bm and are interpreted as implications

A1 ∧ … ∧ An → B1 ∨ … ∨ Bm .

The main difference is that any simple sequent ki′ |- ki″ presents not pure logical but cause-
effect relation: event ki″ is generated by event ki′ and appears after it, so we cannot mix
variables from ki′ with variables from ki″ .

But sometimes we may discard this time aspect and consider terms ki′ and ki″ on the same
level, for instance, when looking for stable states of the regarded system. In that case sequent
ki′ |- ki″ could be formally changed for implication ki′ → ki″ and subjected further to Boolean
transformations, leading to equivalent sets of Gentzen sequents and corresponding sets of
standard disjuncts usual for theory of logical inference.

For example, in such a way the system of simple sequents

 ab |- cd', a'b' |- cd, a'b |- c

may be transformed into the following system of disjuncts:

 a ∨ b ∨ d, a' ∨ b' ∨ d', a' ∨ c' ∨ d, b ∨ c' ∨ d'.

5. APPLICATION IN LOGIC DESIGN
The model of simple sequent automaton is rather close to the well-known technique of

disjunctive normal forms (DNF) used for hardware implementation of systems of Boolean
functions [6]. Indeed, each row of matrix A may be regarded as a conjunctive term (product),
and each column in B defines DNFs for two switching functions of the corresponding output
or inner variable: 1s indicate terms entering ON-functions, while 0s indicate terms which
enter OFF-functions. Note, that these DNFs can be easily obtained by transforming the
regarded automaton into Sf-form and changing after that expressions fi

1|- ui for ui
1= fi

1 and fi
0|-

ui' for ui
0= fi

0. For the same example

p1= a'bqr, p0 = c'r '; q1 = aq' ∨ c'pq', q0 = a'bqr ; r1 = c'pq', r0 = b'cp ;
u1 = b'cp, u0 = c'pq' ; v1 = aq' ∨ a'bqr ; w1 = c'r' ∨ c'pq', w0 = b'cp ;
z1 = aq', z0 = a'bqr .

It is seen from here that the problem of constructing a simple sequent automaton with
minimum number of rows is similar to the minimization of a system of Boolean functions in
the class of DNFs known as a hard combinatorial problem. An approach to its solving was
suggested in [7, 8].

The considered model turned out to be especially convenient for representation of
programmable logic arrays (PLA) with memory on RS-flip-flops. It is used also in methods of
automaton implementation of parallel algorithms for logical control described by expressions
in PRALU [11].

Consider a simple sequent automaton shown in the above example. It is implemented by
a PLA represented below. It has three inputs (a, b, c) supplied with inverters (NOT-elements)
and four outputs (u, v, w, z) supplied with RS-flip-flops. So its input and output lines are

doubled. The six input lines are intersecting with five inner ones, and at some points of
intersection transistors are placed. Their disposition can be presented by a Boolean matrix
easily obtained from matrix A, and determines the AND-stage of the PLA. In a similar way
the OR-stage of the PLA is found from matrix B and realized on the intersection of inner lines
with 14 output ones.

Figure 1. PLA implementation of a sequent automaton

6. CHECKING FOR CORRECTNESS
In general, correctness is a quality of objects of some type, defined as the sum of several

properties, which are considered reasonable and necessary [10].
Let us enumerate such properties first for synchronous sequent automata.
Evidently, for any sequent si which carries some information inequalities fi ≠ 0 and ki ≠ 1

should hold, to avoid trivial sequents.
Sequents si and sj are called parallel if they could be executed simultaneously. A

necessary and sufficient condition of parallelism for non-initialized automaton is relation
fi ∧ fj ≠ 0, for initialized - relation fi ∧ fj ∧ ϕ ≠ 0.

First of all, any sequent automaton should be consistent, that is very important. That
means that for any parallel sequents si and sj relation ki ∧ kj ≠ 0 must hold. Evidently, this
condition is necessary, inasmuch as by its violation there exists some variable that must take
two different values which is impossible.

The second quality is not so necessary for sequent automata as the first one, but is also
useful. It is irredundancy. A system S is irredundant if it is impossible to delete from it some
sequent or if only a literal from a sequent without violating the functional properties of the
system. For example, it should not have "non-reachable" sequents, such si for which
fi ∧ ϕ = 0.

c

a

b

 p
 p'

 q
 q'

r

 r'
 u
 u'
 v
 v'
 w
 w'
 z

 z '

p
 p'

q
q'

 r

 r'

It is rather easy to check a simple sequent automaton for consistency. An automaton
represented by ternary matrices A and B is obviously consistent if for any orthogonal rows in
matrix B the corresponding rows of matrix A are also orthogonal. Note that this condition is
satisfied in Example.

One more useful quality called persistency is very important for asynchronous sequent
automata. To check them for this quality it is convenient to deal with the functional canonical
form.

The point is that several sequents can be executed simultaneously and if the sequent
automaton is asynchronous, these sequents (called parallel) could compete - the so called race
could take place. The automaton is persistent if the execution of one of the parallel sequents
does not destroy the conditions for executing other ones.

Affirmation 4. In a persistent asynchronous sequent automaton for any pair of parallel
sequents

 fi
1 |- ui and fj

1 |- uj ,
 fi

0 |- ui' and fj
1 |- uj ,

 fi
1 |- ui and fj

0 |- uj' ,
 fi

0 |- ui' and fj
0 |- uj'

the corresponding relation should hold:

 fi
1 fj

1 : ui' uj' ⇒ (fi
1: ui' uj) (fj

1 : ui uj'),
 fi

0 fj
1 : ui uj' ⇒ (fi

0: ui uj) (fj
1 : ui' uj'),

fi
1 fj

0 : ui' uj ⇒ (fi
1: ui' uj') (fj

0 : ui uj),
fi

0 fj
0 : ui uj ⇒ (fi

0: ui uj') (fj
0 : ui' uj),

where expression f : k means the result of substitution those variables of function f which
enter elementary conjunction k for the values satisfying equation k = 1.

The proof of this affirmation can be found in [9].

ACKNOWLEDGMENT
This research was supported by ISTC, Project B-104-98.

REFERENCES
[1] M.Adamski, Digital systems design by means of rigorous and structural method. - Zielona

Gora, 1990 (in Polish).
[2] G.Gentzen, “Untersuchungen über das logische Schließen”, Mat. Z., v. 39 (1934-35), pp.

176-210, 405-431.
[3] V.S.Grigoryev, A.D.Zakrevskij, V.A.Perchuk, “The sequent model of the discrete

automaton”,. Vychislitelnaya tekhnika v mashinostroenii, March 1972, Minsk, Institute of
Engineering Cybernetics, pp.147-153 (in Russian).

[4] V.N.Zakharov, “Sequent description of control automata”, Izvestiya AN SSSR, 1972, №2
(in Russian).

[5] V.N.Zakharov, Automata with distributed memory. Moscow: Energia, 1975 (in Russian).

[6] A.D.Zakrevskij, V.S.Grigoryev, “A system for synthesis of sequent automata in the basis
of arbitrary DNFs”, Problems of Cybernetics. Theory of relay devices and finite automata.
VINITI, Moscow, 1975, pp. 157-166 (in Russian).

[7] A.D.Zakrevskij, “Optimizing sequent automata”, Optimization in digital devices design,
L., 1976, pp. 42-52 (in Russian).

[8] A.D.Zakrevskij, “Optimizing transformations of sequent automata”, Tanul. MTA SeAKJ,
Budapest, 63/1977, p. 147-151 (in Russian).

[9] A.D.Zakrevskij, Logical synthesis of cascade networks. Moscow: Nauka, 1981 (in
Russian).

[10] A.D.Zakrevskij, “The analysis of concurrent logic control algorithms”, Lecture Notes
in Computer Science, vol. 278, Springer Verlag, 1987, pp. 497-500.

[11] A.D.Zakrevskij, Parallel algorithms for logical control. Minsk, Institute of
Engineering Cybernetics, 1999 (in Russian).

