
The International Workshop
on Discrete-Event System Design, DESDes’01,

June 27÷29, 2001; Przytok near Zielona Gora, Poland

FLEXIBLE RESOURCE ARBITER
FOR HETEROGENOUS IMAGE PROCESSING

SYSTEM

Jaromir PRZYBYLO, Marek GORGON

Biocybernetic Laboratory, Institute of Automatics, AGH University, al. Mickiewicza 30,
30-059 Krakow, Poland, <phoenix@biocyb.ia.agh.edu.pl; mago@biocyb.ia.agh.edu.pl>

Abstract. In the present paper realisation of resource arbiter for RETINA image processing module
has been described. The 32-bit RETINA module is used for image acquisition, processing and
analysis. The module's resources include A/C converter, Virtex FPGA device, Motorola 96002
floating-point DSP device and PCI Master interface and they allow real-time realisation of those
operations. Resource arbiter is an important control block of the module. It is responsible for the
resource allocation for the main control elements of the module, it arbitrates the allocation of
internal and external buses, and keeps the information concerning the system state.

Key Words. arbiter, real-time, FPGA, re-configurable computing, image processing

1. INTRODUCTION

The technological progress in the field of production of FPGA devices in the last two years,
oriented towards tailoring of the resources of FPGA devices for the needs of digital image
processing, makes possible realisations of hardware or software-hardware vision systems. The
mostly widespread way of realisation of digital image processing algorithms is the software
method [1][2][3][4]. The software's basic advantage is the possibility of convenient and
flexible realisation of the algorithm. Because of the high calculational complexity of the
image processing algorithms their software realisation is not always efficient enough to allow
the algorithm's work in real time. Therefore search continues for multiprocessor architectures
[5], hardware methods [6][7] and software-hardware methods [8][9] speeding up the
execution of calculations. Great popularity has been achieved by the realisation of image
processing and analysis algorithms in DSP [10][11] and specialised or dedicated hardware
processors [12][13]. Many attempts have been made of realisation in complex, multiprocessor
architecture [5][7][8]. Solution earning a steadily growing popularity is the implementation of
processing algorithms, and recently also image analysis algorithms, in reprogrammable
devices [12][13][14][15].
Essential advantages of the FPGA-based architectures for image processing are their
flexibility, efficiency and structural adaptation to tasks consisting of multiple and parallel
execution of algorithms for relatively simple data like image pixels.
In the present paper heterogeneous architecture has been shown, in which a single FPGA chip
of high densities has been used both for realisation of the image processing and controlling
the resources of the device itself. The paper contains the discussion of architecture and

working modes of that part of the implemented FPGA chip, which realises the function of the
resource arbiter for the constructed image processing system.

2. THE ARCHITECTURE OF THE RETINA HETEROGENEOUS IMAGE PROCESSING SYSTEM.

The 32-bit architecture of heterogeneous image processing system is based on Virtex device
working in co-operation with 96002 floating point DSP. The board is equipped with high-
speed analogue to digital converter, several memory blocks, real-time clock and 32-bit PCI
Master interface (AMCC). The Virtex chip combines two functions. It contains all the
necessary control logic (FPGA Controller) and is used for performing the image processing
operations (Video Processor) - see Fig.1.

Figure 1. The architecture of heterogeneous image processing system.

The board contains three that can be treated as master devices - DSP96002, Video Processor
and PC (through AMCC chip). Optimising the data transfer between the master devices and
memory blocks was an essential goal of implementation of the FPGA Controller.
The FPGA Controller (Fig.2) consists of four modules - three dedicated local sub-controllers
(Video Processor Controller, DSP Controller and AMCC Controller) and the resource arbiter
module. The local sub-controllers are responsible for local arbitration and matching signals
between devices. Therefore parallel work is enabled. Resource arbiter controls the data
transfers between master devices.

3. RESOURCE ARBITER MODULE

The proposed resource arbiter module enables data exchange between master devices and
synchronises their access to memory resources of the module. It enables various arbitration
schemes (e.g. token ring), and due to that the possibility of conflict occurrence between
devices with "master" privileges. It also enables flexible management of the data transfer by
application of two types of device priorities - global and local. If necessary the arbiter's
configuration can be changed by using the possibility of reconfiguration of the FPGA Virtex
device.
The system bus arbiter module (see Fig.2 - module D) consists of the following elements:

• the resource arbiter (RA) itself
• configuration registers (FPGA Registers)

ADC
Bus

Global Bus

ADC
Converter

AMCC Bus

AMCC Controller
 (PC Interface)

Video Processor

Retina SRAM Address Transcoder

DSP SRAM

RS-232

RTC

EPROM

DSP

FPGA controller
FPGA

Video
 in

Port B

Ext. clock

PCI bus RS

DSP
Bus

• buses: FPGA Bus1,2,3 and Internal Bus
• additional arbitration signals

Figure 2. General layout of the controller.

The resource arbiter makes use of the configuration registers, containing the information on
the priorities controlling the interrupts and control semaphores governing the arbitration,
attributed to particular modules. Their state is mapped to local address spaces, what allows an
independent access in any moment - with an essential restriction for the DSP block, when the
external global bus is being used by another device. The configuration registers are directly
connected with local controllers via FPGA Buses 1,2,3. The resource arbiter also obtains, due
to dedicated controllers, various control signals (e.g. interrupts) and the remaining arbitration
signals - allowing supervision over the functioning of every "master" device (e.g. reclaiming
some resources).

4. THE ARCHITECTURE OF RESOURCE ARBITER.

The architecture of the Resource Arbiter provides the possibility of taking full advantage of
module's resources. The introduction of co-operation of three devices provided with potential
possibility of work in "master" mode leads to the necessity of ensuring sufficient resources,
allowing the device's work in various configurations. The application of the FPGA device
allows changes of the control module's infrastructure to be realised fully in hardware, in order
to provide the possibility of the device's work in various modes and configurations.
Resource Arbiter consists of the following blocks (see Fig.3):

• Arbitration Unit (AU) - the main control unit of the arbiter, responsible for conflict
arbitration and management of the modules resources, containing the Grant Register
storing information about intermodular transfers currently taking place;

• Global Arbitration Logic (GAL) - the block co-operating with local arbitration
systems;

• Interrupt Controller (IC);
• Control Unit (CU) - the unit generating the clock signals and RESET signals;
• Watch Dog (WD) - the block containing timers, used for supervision of the

correctness of particular module blocks functioning;
• Additional Logic - additional auxiliary chips, not included in the block diagram.

Arbitration signals

External FPGA buses

Internal FPGA buses

A B C
Dedicated local
subcontrollers

D Resource arbiter module

FPGA Bus 1

ADC
Bus

Internal Bus

DSP
Bus

AMCC Bus

Dual Video Bus

DSP
Controller

Video
Processor

FPGA Bus 2 arb.

arb. arb.

 Resource
 Arbiter

FPGA Registers

FPGA/AMCC
Memory

A B

C

D

AMCC Controller

Video Processor
Controller

Local Arbitration Logic systems have been related with every master devices. The LAL's take
over the local arbitration tasks from RA, while the Resource Arbiter synchronises the data
transfer between the modules. The arbitration, because of the specific features of the DSP, has
been realised in software-hardware manner and it is based on solutions applied in PCI and
DSP96002 processor.

Figure 3. Layout of the Resource Arbiter.

For configuration and setting of the arbiter's working modes control flags semaphores have
been used, located in configuration registers (FPGA Registers):

• Interrupt Register (8-bit) - the respective bits of the register are responsible for
masking the interrupts, which inform the local "master" devices about allocation of the
required resources;

• Priority Register (8-bit) - store the information about local and global priorities;
• Request/Acknowledge Register (3x3-bity + 1 bit) - contains the respective semaphores

controlling the arbitration;
• Auxiliary Registers;

4. FUNCTIONING OF THE RESOURCE ARBITER

The operation of the Resource Arbiter should be analysed taking into account the working
algorithms of the Local Arbitration Logic systems (LAL's), which take over the local
arbitration task from the RA.
The work cycle of the arbitration systems can be divided into several stages, which are
supervised by the Control Unit (CU), responsible also for initialisation (RESET) of the
module and generation of the clock signals. Division of the work cycle into phases allows the
elimination of changes of the FPGA Registers contents during the Resource Arbiter's work,
what might lead to irregularities of its functioning. During the arbitration cycle the following
phases can be distinguished (see Fig.4):

Resource Arbiter

REQ
REQDEST
GLOBAL
LOCAL

3
2

3
6
3
3

3

3

3
3

FPGA Bus

Local
Controllers

arbitration signals

Global
Arbitration

Logic

Arbitration Unit

Interrupt Controller

LACK#

ACK#
REPLY#

GRANT#

Grant
register

GREQ#
GGNT#

3 3

3IRQA(B,C)#

Control
Unit

CLK P1,2,3
4

RESET

CLK RESET interrupts

Local Arbitration
Logic

GREQ#

GGNT#

LREQ#
LGNT#
LACK#

IRQA(B,C)#

INTAP

2 DESTREP

2 DEST
GBUSY_SET FPGA

Registers

WatchDog

timeout

3

GBUSY

IBE#

CLK RESET interrupts

IBE# 3

Figure 4. Phases of the arbitration cycle.

• Phase 0 - Writing to FPGA Register by the "master" devices (setting the semaphores) -
requests for intermodular transfers (optional phase).

• Phase 1 - Start of the arbitration in the Arbiter system - collection of the information
concerning requests, priorities from the FPGA Registers. In absence of Phase 0
initialisation of the Grant Register

• Phase 2 - Resolving the conflicts in the AU unit. Setting of appropriate resource
allocation signals for the GAL system and reservation of the internal bus.

• Phase 3 - Negotiation of the resources reclaiming from the current user (its GAL block
and local LAL system). After regaining control over the resources - setting the
confirmation signal for the initiator. Possible storage of local resources reclaim
requests, generated by the previous user

• Phase 4 - Realisation of the intermodular transfer (optional phase) - reception of
information concerns the allocation of Internal Bus. Bus reclaiming after finishing the
transfer.

5. CONCLUSIONS.

The only possibility of fulfilling all the requirements that should be met by the Resource
Arbiter of the RETINA image processing module, was its implementation in the
reprogrammable FPGA device. Such a solution allows the realisation of flexible and
changeable arbiter structure fully in hardware. It provides a possibility of module adaptation
for realisation of various arbitration procedures. The important thing is the possibility of
configuration of the FPGA's internal memory resources as the module's configuration
registers. The hardware implementation ensures great operation speed and high integration
level of the arbiter's structure. There is also a possibility to adapt the device's structure to
specific algorithms implemented in the system during its usage by the end-user.

Resource Arbiter

REQ
REQDEST
GLOBAL
LOCAL

3

2

3
6
3
3

3

3

3

3

FPGA Bus

Local Controllers

arbitration signals

Global
Arbitration

Logic

Arbitration Unit

Interrupt
Controller

LACK#

ACK#

REPLY#

GRANT#

Grant
register

GREQ#

GGNT#

3 3

3 IRQA(B,C)#

Control
Unit

CLK
P1,2,3

4

RESET

CLK RESET interrupts

INTAP

2DESTREP

2 DEST
GBUSY_SET

WatchDog

timeout

3

GBUSY
FPGA

Registers

IBE# 3

PHASE 0

PHASE 1

PHASE 2

PHASE 3

PHASE 4

The possibility of gradual development of the arbiter's structure during the prototype's testing
should be also highly appreciated. The resources of the FPGA device allow a construction of
additional modules, supporting the developing process of the arbiter and the FPGA module as
a whole. Flexible FPGA structure opens a series of possibilities of RETINA module testing
and monitoring of its co-operation with external systems via the PCI bus and serial port.
The implementation has been done in Xilinx Virtex XCV 300BG432-6 device. A prototype
of the RETINA card is supplied with BGA432 socket, so XCV800E is considered as a final
implementation platform.

ACKNOWLEDGEMENTS

We wish to thank the Xilinx University Program for software donation. The research has been
performed under University of Mining and Metallurgy Research Grant no.: 10.10.120.39.

REFERENCES.

1. PRATT W.K., Digital Image Processing, John Wiley & Sons, Inc., 1991.
2. TADEUSIEWICZ, R., Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo

Fundacji Postępu Telekomunikacji, Kraków 1997.
3. ULLMAN, S., High-level Vision, The MIT Press 1997
4. UMBAUGH, S. E., Computer Vision and Image Processing, Prentice Hall

International, Inc., 1998.
5. TADEUSIEIWICZ, R. The multiprocessors architectures for image processing,

Lecture Notes on Computer Vision and Artificial Intelligence, Warszawa, pp. 226-269,
1989.

6. KUNG, S.Y., VLSI Array Processors, Prentice Hall, New Jersey 1989.
7. JONKER, P.P., Morphological Image Processing: Architecture and VLSI design,

Delft University of Technology, 1992.
8. LANGE, A.A.J., Design and Implementation of Highly Parallel Pipelined VLSI

System, Delft University of Technology, 1991.
9. DAGLESS, E. at al., Image Processing Hardware, Proc. of the 5-th School Computer

Vision and Graphics Zakopane, Wyd. Format Wrocław 1994.
10. SOREL, Y., Real - Time Embedded Image Processing Applications using the A3

Methodology, Proc. of ICIP – 96, IEEE 1996.
11. BRUDŁO, P., System przetwarzania i analizy sekwencji obrazów video w oparciu o

sieć procesorów sygnałowych serii ADSP-21060, Konferencja Systemy Czasu
Rzeczywistego 2000, Katedra Automatyki Akademii Górniczo-Hutniczej 2000.

12. WIATR, K. Architektura potokowa specjalizowanych procesorów sprzętowych do
wstępnego przetwarzania obrazów, AGH Uczelniane wydawnictwa Naukowo-
Techniczne, Kraków 1999.

13. GORGOŃ, M. 1995. Evaluation of reliability of dedicated image processors in low
level image processing, Ph.D. Thesis: AGH Kraków, 25 September 1995.

14. GORGOŃ, M. 1997. Universal Reprogrammable Architecture for Implementation
Dedicated Image Processors Based on FPGA. Proc. of Sixth International Conference
on Image Processing and its Applications IPA 97, Trinity College, Dublin, Ireland 14-
17 July 1997, IEE Conference Publication no.: 443, vol.2, pp. 556-560.

15. XUE, J, at al., Approach to constructing reconfigurable computer vision system, Proc.
Of SPIE Vol. 4212, SPIE Photonics East Conference, Boston 2000.

16. XILINX 1999. AppLINX Rev.9 First Quarter 1999.

