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Abstract. In the present paper realisation of resource arbiter for RETINA image processing module 
has been described. The 32-bit RETINA module is used for image acquisition, processing and 
analysis.  The module's resources include A/C converter, Virtex FPGA device, Motorola 96002 
floating-point DSP device and PCI Master interface and they allow real-time realisation of those 
operations. Resource arbiter is an important control block of the module. It is responsible for the 
resource allocation for the main control elements of the module, it arbitrates the allocation of 
internal and external buses, and keeps the information concerning the system state. 
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1. INTRODUCTION 

The technological progress in the field of production of FPGA devices in the last two years, 
oriented towards tailoring of the resources of FPGA devices for the needs of digital image 
processing, makes possible realisations of hardware or software-hardware vision systems. The 
mostly widespread way of realisation of digital image processing algorithms is the software 
method [1][2][3][4]. The software's basic advantage is the possibility of convenient and 
flexible realisation of the algorithm. Because of the high calculational complexity of the 
image processing algorithms their software realisation is not always efficient enough to allow 
the algorithm's work in real time. Therefore search continues for multiprocessor architectures 
[5], hardware methods [6][7] and software-hardware methods [8][9] speeding up the 
execution of calculations. Great popularity has been achieved by the realisation of image 
processing and analysis algorithms in DSP [10][11] and specialised or dedicated hardware 
processors [12][13]. Many attempts have been made of realisation in complex, multiprocessor 
architecture [5][7][8]. Solution earning a steadily growing popularity is the implementation of 
processing algorithms, and recently also image analysis algorithms, in reprogrammable 
devices [12][13][14][15]. 
Essential advantages of the FPGA-based architectures for image processing are their 
flexibility, efficiency and structural adaptation to tasks consisting of multiple and parallel 
execution of algorithms for relatively simple data like image pixels. 
In the present paper heterogeneous architecture has been shown, in which a single FPGA chip 
of high densities has been used both for realisation of the image processing and controlling 
the resources of the device itself. The paper contains the discussion of architecture and 



working modes of that part of the implemented FPGA chip, which realises the function of the 
resource arbiter for the constructed image processing system.  

2. THE ARCHITECTURE OF THE RETINA HETEROGENEOUS IMAGE PROCESSING SYSTEM. 

The 32-bit architecture of heterogeneous image processing system is based on Virtex device 
working in co-operation with 96002 floating point DSP. The board is equipped with high-
speed analogue to digital converter, several memory blocks, real-time clock and 32-bit PCI 
Master interface (AMCC). The Virtex chip combines two functions. It contains all the 
necessary control logic (FPGA Controller) and is used for performing the image processing 
operations (Video Processor) - see Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The architecture of heterogeneous image processing system. 

The board contains three that can be treated as master devices - DSP96002, Video Processor 
and PC (through AMCC chip). Optimising the data transfer between the master devices and 
memory blocks was an essential goal of implementation of the FPGA Controller. 
The FPGA Controller (Fig.2) consists of four modules - three dedicated local sub-controllers 
(Video Processor Controller, DSP Controller and AMCC Controller) and the resource arbiter 
module. The local sub-controllers are responsible for local arbitration and matching signals 
between devices. Therefore parallel work is enabled. Resource arbiter controls the data 
transfers between master devices. 

3. RESOURCE ARBITER MODULE 

The proposed resource arbiter module enables data exchange between master devices and 
synchronises their access to memory resources of the module. It enables various arbitration 
schemes (e.g. token ring), and due to that the possibility of conflict occurrence between 
devices with "master" privileges. It also enables flexible management of the data transfer by 
application of two types of device priorities - global and local. If necessary the arbiter's 
configuration can be changed by using the possibility of reconfiguration of the FPGA Virtex 
device. 
The system bus arbiter module (see Fig.2 - module D) consists of the following elements: 

• the resource arbiter (RA) itself 
• configuration registers (FPGA Registers) 
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• buses: FPGA Bus1,2,3 and Internal Bus 
• additional arbitration signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  General layout of the controller. 

The resource arbiter makes use of the configuration registers, containing the information on 
the priorities controlling the interrupts and control semaphores governing the arbitration, 
attributed to particular modules. Their state is mapped to local address spaces, what allows an 
independent access in any moment - with an essential restriction for the DSP block, when the 
external global bus is being used by another device. The configuration registers are directly 
connected with local controllers via FPGA Buses 1,2,3. The resource arbiter also obtains, due 
to dedicated controllers, various control signals (e.g. interrupts) and the remaining arbitration 
signals - allowing supervision over the functioning of every "master" device (e.g. reclaiming 
some resources). 

4. THE ARCHITECTURE OF RESOURCE ARBITER. 

The architecture of the Resource Arbiter provides the possibility of taking full advantage of 
module's resources. The introduction of co-operation of three devices provided with potential 
possibility of work in "master" mode leads to the necessity of ensuring sufficient resources, 
allowing the device's work in various configurations.  The application of the FPGA device 
allows changes of the control module's infrastructure to be realised fully in hardware, in order 
to provide the possibility of the device's work in various modes and configurations.  
Resource Arbiter consists of the following blocks (see Fig.3): 

• Arbitration Unit (AU) - the main control unit of the arbiter, responsible for conflict 
arbitration and management of the modules resources, containing the Grant Register 
storing information about intermodular transfers currently taking place;   

• Global Arbitration Logic (GAL) - the block co-operating with local arbitration 
systems; 

• Interrupt Controller (IC); 
• Control Unit (CU) - the unit generating the clock signals and RESET signals; 
• Watch Dog (WD) - the block containing timers, used for supervision of the 

correctness of particular module blocks functioning; 
• Additional Logic - additional auxiliary chips, not included in the block diagram. 
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Local Arbitration Logic systems have been related with every master devices. The LAL's take 
over the local arbitration tasks from RA, while the Resource Arbiter synchronises the data 
transfer between the modules. The arbitration, because of the specific features of the DSP, has 
been realised in software-hardware manner and it is based on solutions applied in PCI and 
DSP96002 processor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Layout of the Resource Arbiter. 

For configuration and setting of the arbiter's working modes control flags semaphores have 
been used, located in configuration registers (FPGA Registers): 

• Interrupt Register (8-bit) - the respective bits of the register are responsible for 
masking the interrupts, which inform the local "master" devices about allocation of the 
required resources; 

• Priority Register (8-bit) - store the information about local and global priorities; 
• Request/Acknowledge Register (3x3-bity + 1 bit) - contains the respective semaphores 

controlling the arbitration; 
• Auxiliary Registers; 

4. FUNCTIONING OF THE RESOURCE ARBITER 

The operation of the Resource Arbiter should be analysed taking into account the working 
algorithms of the Local Arbitration Logic systems (LAL's), which take over the local 
arbitration task from the RA. 
The work cycle of the arbitration systems can be divided into several stages, which are 
supervised by the Control Unit (CU), responsible also for initialisation (RESET) of the 
module and generation of the clock signals. Division of the work cycle into phases allows the 
elimination of changes of the FPGA Registers contents during the Resource Arbiter's work, 
what might lead to irregularities of its functioning. During the arbitration cycle the following 
phases can be distinguished (see Fig.4): 
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Figure 4. Phases of the arbitration cycle. 

• Phase 0 - Writing to FPGA Register by the "master" devices (setting the semaphores) - 
requests for intermodular transfers (optional phase). 

• Phase 1 - Start of the arbitration in the Arbiter system - collection of the information 
concerning requests, priorities from the FPGA Registers. In absence of Phase 0 
initialisation of the Grant Register 

• Phase 2 - Resolving the conflicts in the AU unit. Setting of appropriate resource 
allocation signals for the GAL system and reservation of the internal bus. 

• Phase 3 - Negotiation of the resources reclaiming from the current user (its GAL block 
and local LAL system). After regaining control over the resources - setting the 
confirmation signal for the initiator. Possible storage of local resources reclaim 
requests, generated by the previous user 

• Phase 4 - Realisation of the intermodular transfer (optional phase) - reception of 
information concerns the allocation of Internal Bus. Bus reclaiming after finishing the 
transfer.  

5. CONCLUSIONS. 

The only possibility of fulfilling all the requirements that should be met by the Resource 
Arbiter of the RETINA image processing module, was its implementation in the 
reprogrammable FPGA device.  Such a solution allows the realisation of flexible and 
changeable arbiter structure fully in hardware. It provides a possibility of module adaptation 
for realisation of various arbitration procedures. The important thing is the possibility of 
configuration of the FPGA's internal memory resources as the module's configuration 
registers. The hardware implementation ensures great operation speed and high integration 
level of the arbiter's structure. There is also a possibility to adapt the device's structure to 
specific algorithms implemented in the system during its usage by the end-user. 
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The possibility of gradual development of the arbiter's structure during the prototype's testing 
should be also highly appreciated. The resources of the FPGA device allow a construction of 
additional modules, supporting the developing process of the arbiter and the FPGA module as 
a whole. Flexible FPGA structure opens a series of possibilities of RETINA module testing 
and monitoring of its co-operation with external systems via the PCI bus and serial port.  
The implementation has been done in Xilinx Virtex XCV 300BG432-6 device.  A prototype 
of the RETINA card is supplied with BGA432 socket, so XCV800E is considered as a final 
implementation platform.  
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